時間:2023-07-07 09:20:23
緒論:在尋找寫作靈感嗎?愛發表網為您精選了8篇人工智能研究綜述,愿這些內容能夠啟迪您的思維,激發您的創作熱情,歡迎您的閱讀與分享!
>> 研究生人工智能系列課程教學改革 研究生人工智能課程教學探索 研究生“人工智能”課程教學改革探索 人工智能實驗課教學改革研究 人工智能課程全英文教學改革 創新型人工智能教學改革與實踐 《人工智能》碩士課程教學改革的研究與實踐 落實科學發展觀,深化“人工智能”課程的教學改革 面向人工智能的信息管理與信息系統專業教學改革 人工智能課程教學方法研究 人工智能的應用研究 日本巨資扶持人工智能研究 人工智能系列課程研究 高中人工智能教學初探 《人工智能》雙語教學初索 人工智能雙語教學建設 人工智能實驗教學探討 “人工智能”之父 人工智能 AI人工智能 常見問題解答 當前所在位置:l(美國人工智能協會)、caiac.ca/(加拿大人工智能協會)等,它們包括了學科前沿動態、討論交流及大量的代碼資源等。通過使用這些資源,學員可及時了解人工智能最新發展動態,進行人工智能程序設計的交流及對一些問題進行較為深入的探討。
2教學方法研究
研究生教學應更突出學生的主體地位,注重發揮其學習的主動性和自覺性,為此,課程組結合課程特點,在教學方法進行了如下探索。
2.1加強教學設計
教學設計就是對教學活動進行系統計劃的過程, 是教什么(課程內容)及怎么教(組織、方法、策略、手段及其他傳媒工具的使用等)的過程[2]。在教學過程中,每節課授課前,堅持集體備課的原則,由課程組集體討論選定授課內容,補充閱讀文獻,根據授課對象與課程內容特點,確定課堂組織方式,采用的授課方式以研討式教學為主,給合講授、實驗、自學等。
2.2抓好課堂教學環節
教學方法與教學手段是保證課堂教學效果的關鍵。本課程授課對象主要為碩士研究生,他們的接受能力較強,有一定的求知欲。由于學員人數較少,授課方式可靈活組織。教室有完備的多媒體設備,基本的軟件實驗環境,教學過程可采用靈活教學方法、多種教學手段,提高教學效率,保證授課質量。
1) 以研討式為主的教學方式。研究生教學應堅持學術研究為導向,發揮學員在學習過程中的主動性和自覺性。由于研究生學員有一定的學習基礎與自學能力,教員可以在課前給學員布置預習內容,學員通過查閱資料、分析整理進而形成自己的觀點,使在課堂教學中師生互動交流成為可能,改變傳統的教員講,學員聽的灌輸式教學方式。研討式教學也有力于培養學員積極思考、創新思維的習慣與能力。
2) 教學手段的信息化。人工智能原理教學一個突出矛盾是知識點多、內容抽象、理論性強,但學時較少,因此,必須發揮現代教學手段的作用,提高教學效率。為此,課程組對每節課都精心設計了教學課件,課堂教學中以課件為主,輔以板書,充分利用多媒體信息量大、直觀等優點,改善教學效果;引入教學聲像資料,便于學員課下學習;設計演示程序,使部分比較抽象、不易于理解的內容,如子句歸結、搜索策略更形象直觀,易于學習和掌握。
3注重培養學員學術研究能力
學術能力是指專門對某一學問進行系統的哲理或理論研究的能力,它不僅包括思辨的方面,還包括實踐及感性的敏感力等方面。研究生階段學習的一個突出特點是要求學習的主體――研究生必須具備研究的能力[3]。論文寫作是培養、鍛煉、提高研究生的學術能力的重要途徑,在教學實施過程中,要求每個專題學習結束后,都要提交一份格式符合期刊發表要求的總結報告,題目可自行選定,也可由教員指定;內容既可以是人工智能該專題某一算法的實現,也可以是對某一問題的進一步研究,或者是對該專題最新研究進展的綜述。教員重點在以下幾個方面予以指導。
1) 選題準確。要求選題不能過于宏大,應以小題目反映大問題,具有一定的可研究性為宜。
2) 研究內容。研究目標明確,方法恰當,能夠提出自己的見解,所提觀點正確。
3) 論文結構。結構清晰、完整,論述嚴謹,表達規范。
4) 占有文獻豐富。撰寫過程中要有意識培養學員查閱科技文獻的能力,要求查閱反映最新研究成果的權威文獻。
4加強實驗環節教學
人工智能教學在進行各種理論知識講授的同時,還應重視實踐教學,把抽象的知識轉化為形象、直觀的實驗,讓學員真正理解人工智能的概念、本質、研究目標,從而提高學員多角度思維的能力和邏輯推理能力,進一步了解信息技術、計算機技術發展的前沿,培養他們對人工智能研究的興趣,激發對人工智能技術未來的追求。為此,課程組借鑒國內外知名大學人工智能實驗教學經驗,編寫了《人工智能原理實驗指導書》,圍繞問題表示、經典邏輯推理、不確定推理、搜索策略及簡單專家系統實現等教學內容提供了7組實驗供學員選擇。
例如,在狀態空間搜索一節教學過程中,先完成理論部分的教學,使學員對狀態空間基本概念、問題表示及求解方法有一個準確的認識,然后進行實驗教學。由學員自主完成重排九宮問題求解的程序,初始狀態和目標狀態如圖1所示,調整的規則是,每次只能將與空格(左、上、下、右)相鄰的一個數字平移到空格中[4]。實驗過程重點指導學員掌握狀態空間進行問題求解的關鍵步驟:問題表示和搜索策略。問題表示就是要確定該問題的基本信息及程序實現的數據結構,基本信息有初始狀態集合、操作符集合、目標檢測及路徑費用函數,數據結構可采用向量、鏈表等形式;搜索策略可分為盲目式搜索和啟發式搜索,可按照先易后難的原則,先實現盲目搜索中的廣度優先及深度優先搜索,在此基礎上再定義估價函數實現啟發式搜索。而在啟發式搜索實現過程中,又可以通過定義不同的啟發函數:如某狀態格局與目標節點格局不相同的牌數、不在目標位置的牌距目標位置的距離之和等加以比較,準確理解啟發函數的意義。通過實驗,學員加深了對課堂講授的理論知識的理解,能夠熟練地將狀態空間法運用于實際問題的求解,提高了工程實踐能力。
實驗教學組織方式可根據具體的實驗內容特點,采用上機編程實驗、演示程序驗證、模擬平臺開發、分組討論等多種形式進行。
5適度開展雙語教學
研究生的英語基礎普遍較好,基本都通過了國家公共英語四級考試,部分學員通過了六級考試,加之在本科階段還開設了專業英語課程,因此,在培養研究生人工智能知識的同時,我們要提高學員閱讀原版英文資料、用英語進行簡單科技寫作及對外學術交流的能力,適度開展雙語教學,對此,我們可采取以下基本方式。
1) 專業術語全部用英語表示。
在教學過程中用英語表達人工智能原理中的專業術語和主要概念,如Knowledge Representation(知識表示)、Depth-First Search(深度優先搜索)、Breadth- First Search(廣度優先搜索)等。
2) 以英文原版教材為教學參考書。
選定機械工業出版社出版的《Artificial Intelligence Structures and Strategies for Complex Problem Solving》為參考書,該書“是人工智能課程的完美補充。它既能給讀者以歷史的觀點,又給出所有技術的實用指南[5]。”
3) 加強英文文獻的閱讀。
在課程論文撰寫時,要求閱讀一定數量的外文文獻;在討論課中,鼓勵學員使用英語進行討論。
經過課程學習,學員都能準確掌握人工智能學科專業詞匯,英文運用能力得到一定提高,能較自如地閱讀原版英文專業資料,為進一步用英文進行學術交流及學術論文寫作打下基礎。
6考試與成績評定改革
考核方式采用傳統的試卷與課程論文、實踐環節等三部分組成,全面考查學員對基礎理論知識掌握情況以及理論聯系實際的能力,其中試卷占70%,課程論文占10%,實踐環節占20%。課程論文題目不作限制,由學員在課程學習階段結合某一專題選定題目,課程論文以選題意義、研究內容、論文結構、參考文獻及撰寫規范等指標為評價依據;實驗成績采用實驗過程考查、實驗結果驗收和實驗報告評閱相結合的考核方法,綜合評定。這樣做不但考核了學員人工智能基本理論掌握情況,也反映了學員的學術研究能力和工程實踐能力。同時,考核結合實際教學進程,改變了單一課終總結性考核的弊端。
7結語
經過課程組近兩年的教學方法研究與教學實踐,研究生人工智能原理課程教學收到較好的效果,但仍存在一些問題,如在課堂討論環節,個別學員準備不充分、討論不夠深入;課程論文撰寫選題隨意,文獻綜述不夠全面、準確,論文格式不夠規范等。在今后的授課中,課程組將根據授課研究生人數較少的特點,采取明確每名學員預習重點、加強課程論文交流等方式予以改進,力求取得更好的教學效果。同時,進一步充分利用便利的校園網平臺,開展“人工智能原理”網絡課程建設,購買或自主開發網絡教學資源,引導學員利用網絡資源進行個性化自主學習,增強教學過程的信息化程度。
參考文獻:
[1] 王永慶. 人工智能原理與方法[M]. 西安:西安交通大學出版社,2002:1.
[2] 李志厚. 國外教學設計研究現狀與發展趨勢[J]. 外國教育研究,1998(1):6-10.
[3] 肖川,胡樂樂. 論研究生學術能力的培養[J]. 學位與研究生教育,2006(9):1-5.
[4] 周金海. 人工智能學習輔導與實驗指導[M]. 北京:清華大學出版社,2008:204.
[5] George F.Luger.Artificial Intelligence Structures and Strategies for Complex Problem Solving[M].北京:機械工業出版社,2009:754.
Reform on Postgradrates Artificial Intelligence Course Teaching
TAN Yuehui, QI Jianfeng, WANG Hongsheng, LI Xiongwei
(Department of Computer Engineering, Ordnance Engineering College, Shijiazhuang 050003, China)
【Abstract】In recent years, with the support of highly developed electronic technology, artificial intelligence has developed rapidly, even a lot of artificial intelligence products have been put into use and walk, into people's lives. In this paper, the artificial intelligence is reviewed, and analyzed the present situation of artificial intelligence technology, points out its development problems, and the future of artificial intelligence is prospected.
【關鍵詞】人工智能;發展現狀;未來展望
【Keywords】artificial intelligence; current situation of the development; future
【中圖分類號】TP18 【文獻標志碼】A 【文章編號】1673-1069(2017)04-0107-02
1 引言
2016年年初,韓國圍棋國手李在石與圍棋程序Alpha Go對弈中首戰失利,再一次將人工智能拉入了公眾的視野,使其成為2016年度話題度最高的科技之一。不可否認,近些年來人工智能發展迅速,很多人工智能產品已經開始進入人們的家中,如掃地機器人、智能保姆等,雖然它們還沒有美國大片《終結者》中所描述得那么先進,但從前遙不可及的人工智能概念正在一步步變為現實卻是不爭的事實。人工智能的現狀如何,它又將如何發展,都是學界較為關注的課題。
2 人工智能綜述
2.1 人工智能的概念
人工智能即AI,其英文全稱為Artificial Intelligence。人工智能的概念要從人工和智能兩方面來了解,所謂人工就是指人工智能脫胎于人類的文明,是人類智慧的產物;而智能則是指具有人工智能的計算機或其他子設備可以模擬人類的智能行為和思維方式,人工智能是計算機科學的一個分支,它的近期主要目標在于研究用機器來模仿和執行人腦的某些智能功能,并開發相關理論和技術。
2.2 人工智能的現實應用
如今的人工智能機器,可以在勝任一些復雜腦力勞動的同時,輔助人類進行記憶和邏輯運算等活動。現階段學者已經研制出了一些可以模擬人類精神活動的電子機器,經過完善升級,這些電子機器將有希望超越人類的能力,協助人類完成一些執行難度較大的工作。但是目前研制出的自動化系統或者機器人雖然可以代替部分人類勞動,卻還沒有到達可以實現人類多方面協調和自我學習升級的智能水平,要制造出一款可以完全擁有人類智慧的機器,還需進一步深入研究。還有一些人工智能產物經常應用于各種商業用途,例如單位內部的客戶信息系統,決策支持系統,以及我們在世面上可以看見的醫學顧問、法津顧問等軟件。
3 人工智能發展現狀
3.1 智能接口技術研究現狀
人工智能接口研究就是為了實現人機交流,為此學者必須從理論和實踐兩方面努力,解決計算機對文字和語言的理解與翻譯、對自我的表達等功能問題。由于智能接口技術的研究和應用,計算機技術的發展獲得了極大的推動力,在運行速率和人機交流等方面都有巨大提升。
3.2 數據挖掘技術研究現狀
數據挖掘技術主要是對各類模糊的、大量的應用數據、人未知的、潛在已經存在的數據進行整理挖掘進行細致的研究,尋找出對研究有用的數據。目前,數據庫、人工智能、數理統計已經成為數據挖掘技術的三大技術支撐,以基礎理論、發現算法、可視化技術、知識表示方法、半結構化等作為研究內容,為數據挖掘技術的發展提供理論和技術支持。
3.3 主體系統研究現狀
主體系統可以實現機器意圖和想法的生成,是一種智能方面更接近人類的自主性實體系統。自主系統可以完成一些相對獨立、自主的任務,甚至可以通過調整自我狀態,應對環境和特殊情況的變化,進而保證自身規劃任務的完成。在多主體系統研究中,主要是從物理和邏輯思維方面對主體進行智能行為的分析研究。
4 人工智能發展中面臨的問題
4.1 識別功能的困惑
計算機識別技術研究在近些年取得了大量成果,其產品的實際應用范圍較廣,但不可否認的是,計算機識別的模式是基于一定的算法和程序設定的,其識別機制完全不同于人類的感官識別,因此,在計算機進行識別,尤其是圖形識別時,對各種印刷體、文字、指紋等清晰圖形可以快速識別,但對于相似度較高的物體,計算機識別能力相對較弱,識別失敗的情況較為普遍。語音識別主要研究各種語音信號的分類。語音識別技術近年來發展很快,但是缺點是識別極易受到干擾,發音不標準的語音較易引發識別錯誤。
4.2 GPS功能的局限性
GPS是企圖實現一種不依賴于領域知識求解人工智能問題的通用方法,但是問題內部的表達形式和領域知識是分不開的,用謂詞邏輯進行定理歸結或者人工智能通用方法GPS,都可以從分析表達能力上找出其局限性,這樣就減少了人工智能的應用范圍[1]。
5 人工智能的未來應用展望
人工智能與人生活最息息相關的應用范圍就是融入人們的衣食住行和教育等方面,這也是人工智能未來最普遍的應用方向。
5.1 無人駕駛的汽車
奔馳、豐田等很多大型汽車企業都在研究o人駕駛的汽車,像007電影中的那種擁有自主辨別路況、自動駕駛等功能的汽車也許很快就會成為現實。自動駕駛的汽車要搭載的技術并不只人工智能一種,它還需要將自動控制和視覺計算等新型技術集成應用,改變現有汽車的體系結構,賦予其自動識別、分析和控制的能力。因此,自動駕駛汽車需要實現三方面的技術突破:其一,實現利用攝像設備、雷達和激光測距機來獲得路況信息;其二,實現利用地圖進行自動的車輛導航;其三,根據已有信息數據對車輛的速度和方向進行控制。未來的自動駕駛汽車還可以通過車輛之間的信息互通和互相感應,來協調車速和方向,避免車輛碰撞,實現自動駕駛車輛的安全行進。
5.2 智能化的課堂
當前已經有一些智能化的教學軟件,教師們可以在這些軟件上把教學課件傳送給學生,并進行授課答題,學生還可以與教師彈幕互動,使課堂變得妙趣橫生,方便了教師的授課活動。對于學生而言,能夠在期末十分便捷地回顧上課的錯題,甚至能夠在幾年后翻閱學習過的課件;對于教師而言,能夠精細地知道學生對知識的掌握程度,甚至能夠發現最積極和最懈怠的學生。未來的智能課堂將更具有時間延展性,學生不僅可以在課堂學習知識,還可以利用智能電子設備進行課前預習和課后復習,從而使學生可以在更加趣味性的氛圍中進行自主學習安排。
5.3 自動化的廚房
今后的廚房將會更加智能化,當你做飯時,設定好你想要的菜譜,準備好所需的食材,烹調設備即可將飯菜制作得恰到好處。它會根據你食材的新鮮程度,為你推薦最適合的菜譜,并計算出其營養參考標準,并為你推薦其他食物,使膳食營養均衡。當你家中某樣食材不足時,物流公司便會將時下最新鮮的這一食材送至你家中[2]。
6 結語
人工智能這一概念是在1956年提出的,在當時,人工智能還只是人們頭腦中的一種幻想,而在60年后的今天,人工智能的夢想已經逐漸照進現實,它甚至滲透進了工業、醫學、服務等多個領域,可以說人工智能正在改變著我們生活的世界。但對于人工智能這個人類創造出來的技術,人們也存在一定的擔憂,人工智能將向何方發展?人工智能發展到極致會不會脫離人類的控制?人工智能會不會超越人類的智慧?在諸多問題圍繞下,人工智能技術依然在迅猛發展,它的未來如何,讓我們拭目以待。
【參考文獻】
關鍵詞:人工智能;人機交互;機器學習;深度學習;數據挖掘
中圖分類號:TP27 文獻標識碼:A 文章編號:1671-2064(2017)03-0221-02
人工智能是當今科技發展中最具潛力的熱點問題之一,2016年初轟動世界的谷歌AlphaGo打敗圍棋世界冠軍李世石的經典案例更是引起了全世界廣泛的關注和熱議。“人工智能”這個概念再次被推到了風口浪尖。那么,究竟什么是人工智能呢?它會對我們的生活有什么影響?在這個背景下,我們深入探究人工智能及其相關的技術領域,對于人工智能的普及和發展有著重要意義,也希望能給予人工智能相關領域的科學研究者們提供一些參考和方向。
1 什么是人工智能
人工智能(Artificial Intelligence,AI)是一門全新的信息技術科學,是計算機科學技術的一個重要分支,是指對于模擬、拓展和延伸人類的智能的應用系統及相關的理論和技術方法的開發研究。主要通過研究及了解人類智能的本質從而開發出能給出類似人類智能反饋的智能機器,計算機系統在理解目標方向之后所取得的最大化成果是計算機實現的最大智慧。人工智能不單單是一個特定的技術,它所研究的往往是能創造智能意識的高科技機器,包括了算法和其他應用程序,處理的任務也遠遠超出了簡單計算,從學習感知規劃到推理識別控制等等。人工智能的研究方向包含語言及圖像識別技術、機器人設計、自然語言處理等,日益成熟的理論方法和技術實踐也使得應用領域范圍大規模擴張,人工智能是人類智慧的結晶,未來也可能展現出超過人類的智能。
2 人機智能的研究方向
人工智能的科學研究通常涉及到數學、邏輯學、認知科學、以及最重要的計算機科學等多學科領域,延伸出了以下幾個主要的研究方向:
2.1 邏輯推理與證明
早期的人工智能更多的解決了大量數學問題,邏輯推理是基礎也是研究時間最長最重點的領域之一。通過找到可靠的證明或者反證方法實現潛在的定理證明,根據數據庫的實例進行推導并及時更新證明結論,演繹和直覺相結合,在推理和證明中實現部分智能。
2.2 問題求解
問題求解領域的一大重要應用則是下棋程序的功能實現,化繁為簡、將困難的問題點拆分成為獨立的子問題進行求解;而另一個實例則是數學方程的求解實現,分析各種公式符號的組合意義從而為科學研究者提供強有力的基礎保障。問題求解中所運用的搜索和規約也是人工智能領域中的兩大基本技術。
2.3 自然語言處理
自然語言處理也叫自然語言理解(Natural Language Processing,NLP),是指借助計算機來處理使用人類語言作為計算對象的算法程序,并研究相關的理論方法和技術。NLP是人工智能領域的主要研究方向之一,也是發展時間較長的研究方向之一。語音識別、搜索引擎、機器翻譯等等都是NLP的重要研究內容,目前也都在人工智能領域獲得了突出的應用成果。
2.4 專家系統
專家系統是指具有大量模擬人類相關領域專家知識和經驗的智能計算機程序系統,依托于人工智能相關技術,根據專家系統所提供的數據方法進行判斷推理進一步決策,從而代替人類專家解決一部分該領域的特定問題。從知識表示技術的角度上看,專家系統可分為基于網絡語義、基于規則、基于邏輯、基于框架等幾種類別;而從任務類型及專家系統主要解決的問題類型的角度來看,專家系統也可分成解釋型(分析和闡述符號數據的意義)、調試型(根據故障制定排除方案)、預測型(根據現狀預測指定對象未來可能的結果)、維修型(針對特定故障制定并實施規劃方案)、設計型(按指定需求制作圖樣和方案)、規劃型(根據指定目標制定行動方案)等。
專家系統的建立包含以下幾個步驟:(1)初始專家知識庫的設計:包括問題、知識、概念、形式、規則等多個概念的籌建;(2)開發和試驗系y原型機;(3)改進與歸納專家知識庫等。
專家系統的實現通常建立在大量的數據統計與人類專家提供的問題解決實例上,沒有精確或統一的求解算法,因此也會造成一些局限性。在人工智能與計算機科學快速發展的今天,專家系統也逐漸更重視理論和基礎研究,除了基于經驗的理論,基于規則和模型的方法也將投入到實際運用中,未來的專家系統將更偏向協同式和分布式方向發展。
2.5 機器學習
機器學習是指計算機自動獲取新的推理算法和新的科學事實的過程,是計算機具有智能的基礎。計算機的學習能力是人工智能研究史上的突出成就與重要進展,也是人工智能初步實現的重要標志。機器學了在人工智能領域有著重要應用,對于探索人類智慧的奧秘以及學習方法和機理都有著重要意義,機器學習的時代才剛剛開始,各種理論方法也正在逐步完善中,未來精彩可期。
3 人工智能的應用
人工智能的首次提出至今已有60年的歷史,在這個循序漸進的過程中,無論是功能場景還是機器模式,都逐漸從單一到通用、從簡單到復雜,表達方法也更多種多樣。目前主要通過賦予機器產品一定的人類智能從而有效地提升機器工作效率及能力,未來的人工智能將更多的模擬人類生活環境及思維方式來設計出真正具有人類智能的高效人機系統。
3.1 人工智能在各個行業的應用
人工智能已經運用到人類生產生活的各個方面,主要包括以下幾點:(1)以智能汽車為代表的自動化交通方式。(2)種類繁多的家庭智能服務機器人。(3)用于臨床支持和病人看護中的自動化智能設備及醫療器械。(4)智能教育輔導系統、線上學習和智能輔助學習設備的普及。(5)基于圖像處理和自然語言處理的各類音樂社交軟件及VR設備的興起給互聯網娛樂時代帶來的巨大變革。(6)邏輯證明及智能分析在公共安全領域的預測及防范。(7)大量重復機械的勞動逐漸由智能機器取代,人類承擔著更多的創新及實踐工作。
3.2 人工智能生活應用實例
作為輔助人類生產生活的重要工具,日趨成熟的智能機器人已經快速走進了人們的日常生活中,下面我們介紹幾種常見的使用場景:(1)智能房屋和家居生活的構建:目前的智能停留在自動控制I域,通過用戶指令來便捷的操控比如電視、窗簾、燈具、空調等等;而未來,人工智能的發展將根據你的日常行為了解你的習慣喜好,利用傳感器和自動裝置搜集用戶的行為數據,通過機器學習和深度學習算法改造你所居住的環境。最終實現真正意義上的智能家居生活。(2)無人駕駛的智能汽車:主要通過導航和定位實現規定路線的行駛、通過激光測距、雷達感應和照相等技術,配合復雜的計算公式從而辨別和避讓各種障礙,最終脫離人類操控的環境下自動完成發動、駕駛、剎車等動作。行駛的安全性和準確性在智能機器的幫助下其實更可靠,我們完全有理由相信未來自動駕駛將成為人們出行的新方式。(3)基于神經網絡的新型翻譯方式:在線翻譯相信大多數人都不陌生,使用范圍廣普及率極高,但其準確性一直都是人們關注的焦點之一。谷歌翻譯負責人表示將在部分功能上嘗試使用深度學習技術,如果能順利實施必將使得翻譯準確性的研究取得實質性突破,而基于神經網絡的翻譯方式則將幫助計算機更好地模擬和理解人類思維,使得翻譯結果更流暢合乎規范,也方便人們更好地理解。
4 人工智能的發展歷程
人工智能的發展歷程不算很長,但發展速度卻異常迅猛。跟所有新興的前沿學科一樣,人工智能的發展中也經歷了和低谷時期。根據不同時期代表性人物和事件的發生,我們大致可以將整個過程分為以下幾個階段:
(1)1950年,舉世聞名的“圖靈測試”(圖靈,英國數學家,1912―1954)首次發表于《計算機與智能》一文,即通過房間外的人和兩個房間內的人和機器分別對話中,是否能區分人和機器從而判斷出機器是否具有了人的智能。這是人類對于人工智能最初的概念。
(2)1956年,由香農、麥卡錫、朗徹斯特和明斯基共同發起的DARTMOUTH學會于達特茅斯大學召開,會上首次提出“人工智能”一詞,這是歷史上第一次關于人工智能領域的研討會,見證了人工智能學科研究的開端。
(3)1960年以來,生物進化領域逐漸建立起了遺傳、策略和規劃等算法。1992年計算智能由Bezdek提出,計算智能對于生物進化學的探究有著重大意義,涵蓋了模式識別、人工生命、神經網絡、進化計算等多學科集合與交叉。
(4)上世紀90年代開始,專家系統逐漸興起,對于專家知識庫的不斷改進以及基于規則和模型的協同式分布式專家系統將是未來使用的主要趨勢。
(5)從1960年神經網絡首次應用于自動控制的實施,到1965年人工智能啟發式推理規則的方法引入,再到1977年運籌學理論中概念智能控制模式的成功借鑒,人工智能的發展也順利引導了自動控制模式逐漸切換到了智能控制模式。
(6)從1956年AI概念的正式提出以來,人工智能領域已經取得了眾多突破性的成就和進展,很多天馬行空的想象也隨著科技的進步在一代代科學工作者的不斷努力下逐漸設計落實,人工智能已經從科學研究逐漸走向了人們的日常生活中,成為了當下最具潛力的多學科交叉的前沿科學。
5 人工智能的未來與發展趨勢
從人工智能的提出到逐漸走入人們生活,人工智能的概念一經問世則得到了人們的普遍關注,甚至帶動了語音識別、自然處理處理、機器學習、數據挖掘等一系列相關學科的發展和興盛。人工智能領域中的創新和蓬勃發展是趨勢也是必然,通過了解人工智能學科的發展歷程及應用領域,我們大致可以推測出關于未來人工智能的一些方向:(1)機器學習和深度學習算法指導下更聰明更多樣性更具智能的機器系統。(2)自然語言處理應用中更自然的人機互動交流。(3)機器學習時代更快速的數據處理分析策略。(4)各研發企業和機構對于人工智能先進技術更激烈的競爭和角逐。(5)超人工智能(Artificial Super Intelligence,簡稱ASI)時代下AI是否會走向失控給人們帶來的微恐懼。
6 結語
在短短60年的時間內,人工智能的快速發展已經從很大程度上改善和刷新了人們的生活方式。人工智能的深入研究和實現正在不斷幫助我們探索這個世界、幫助我們搜尋信息應對各種各樣的挑戰。人工智能在逐漸強大的同時,有機遇也存在著巨大的挑戰和技術瓶頸,距離人工智能時代的真正實現還有很長的路要走。而人工智能的不斷更迭完善,是否能取得超越人類智力和認知的智能、是否會出現違背人類價值觀的危險行為將是未來很長一段時間內需要研究的重要課題。
參考文獻
[1]李紅霞.人工智能的發展綜述[J].甘肅科技縱橫,2007,36(5):17-18.
【關鍵詞】人工智能;電氣工程自動化;控制技術
0 引言
隨著經濟的快速發展,人們生活水平得到了較好的改善。經濟的繁榮使得我國工業水平正在不斷提高。在社會主義市場經濟環境下,競爭機制不斷完善和發展,各企業要想在競爭激烈的市場環境中穩定發展,提高企業自身的工作效益非常重要,而人工智能在提高企業經濟效益上有著重要作用。隨著科學技術的不斷發展,人工智能技術不斷成熟并廣泛的應用在電氣工程自動化中,有效的提高了電氣工程自動化的效率,為企業的發展帶來了良好的經濟效益。
1 人工智能概述
人工智能也可以稱作為機器智能,是人類對自然改造做制造出來的系統所表現出來的職能,人工智能是以計算機技術為依靠的。從某種意義上將,人工智能就是沿用人工的方法和技術,以人類的智慧為模型,實現機器智能化的發展。人工智能的產生是隨著科學技術的發展而發展的,是人類與計算機技術發展的產物結晶。科學技術是第一生產力,隨著科學技術的不斷發展,人工智能的發展已經超越了計算機這一門學科。心理學、計算機學科、哲學、物理學等眾多學科都與人工智能有著密切的關系。
2 電氣工程中實現人工智能控制的意義
在我國,是一個能源消耗大國,工業的發展,使得在人力上、物力上、財力上的投入不斷增加,近年來,我國電氣工程事業得到了飛速發展,為了滿足人們日益增長的物質文化需求,適應經濟快速發展的步伐,在競爭激烈的市場環境中,電氣工程面臨著巨大的挑戰。隨著科學技術的不斷發展,人工智能逐漸進入到人們的視野,并且所擔任的角色也來越重要。人工智能在電氣工程中所扮演的角色尤為重要。當前我國電氣工程很容易出現設備故障,經濟效益低下,為了改變這些狀況,在市場環境中長遠生存下去,利用人工智能技術已經迫在眉睫了。在電氣工程中,利用人工智能,可以實現智能化作業,在電氣設備上實現智能化自我檢修,防止出現設備故障,從而提高設備的工作效率,給電氣工程事業帶來經濟效益[1]。
3 人工智能在電氣工程自動化控制技術中的應用
在我國電氣工程中,運用人工智能作業,可以有效的提高智能化作業水平,在作業過程中,可以自行的對機械設備進行檢查,從而加大對電氣工程自動化作業的控制,提高電氣工程自動化作業水平。下面就以火力發電工程為例,來分析人工智能在工程中自動化的控制技術。
3.1火力發電的原理
火力發電系統中主要由燃燒供給系統、給水系統、蒸汽系統、冷卻系統、發電系統等主要部件構成。火力發電是指利用石油、煤和天然氣等燃料燃燒時所產生的熱能來加熱水,使水變成高溫、高壓水汽,然后再由水蒸氣推動發電器來發電。熱電廠為火力發電廠,采用煤炭作為一次能源,利用皮帶傳送技術,向鍋爐輸送經處理過的煤粉,煤粉燃燒加熱鍋爐使鍋爐中的水變為水蒸汽,經一次加熱之后,水蒸汽進入高壓缸。為了提高熱效率,應對水蒸汽進行二次加熱,水蒸汽進入中壓缸。通過利用中壓缸的蒸汽去推動汽輪發電機發電。從中壓缸引出進入對稱的低壓缸。已經作過功的蒸汽一部分從中間段抽出供給煉油、化肥等兄弟企業,其余部分流經凝汽器水冷,成為40度左右的飽和水作為再利用水。40度左右的飽和水經過凝結水泵,經過低壓加熱器到除氧器中,此時為160度左右的飽和水,經過除氧器除氧,利用給水泵送入高壓加熱器中,其中高壓加熱器利用再加熱蒸汽作為加熱燃料,最后流入鍋爐進行再次利用。以上就是一次生產流程[2]。
3.2產品設計人工智能化控制
在火力發電場中,電氣設備的設計是一個非常艱難的過程,設備性能的好壞直接影響到了發電系統的整體效果,要想保障火力發電系統的正常使用,產品設計的科學性很重要。人工智能利用計算機科學技術,經過模型設計,計算出電力系統做需要產品的規格,從而提高了工作效率,縮短了設計的周期,在發電系統中便利統一指導和管理[3]。
3.3經濟運行人工智能化控制
隨著計算機技術的發展,在火力發電廠中,運用計算機技術實現火力發電各系統之間的監控,而人工智能集合了計算機技術與人類的智慧于一體,在火力發電廠中,利用人工智能可以計算出火力發電廠各個系統運行的功率,單位的流量。火力發電廠場中,各個分系統之間是相互聯系的,利用人工智能,能夠計算出會理系統所需要的燃料,蒸汽系統中的水溫變化情況,已經發電成效,對火力發電系統中各個子系統都能夠有效的控制起來,從而保障火力發電廠經濟運行[4]。
3.4機械設備人工智能化控制
火力發電廠所需要的設備較多,所要投入的人力也較大,一般都是一個子系統由兩到三個人監控,發電系統能夠正常運行。通過計算機監控技術,只要一個中央控制系統就能對發電系統的各個子系統中進行人工智能操作,不僅能夠節省大量的人力,還能針對設備故障進行自動化檢修,保障設備運行的效率,實現人工智能化控制[5]。
4 結語
隨著我國科學技術的不斷發展,人工智能已經逐漸成熟起來,并且廣泛應用在當前企業的經營活動中。伴隨著電氣工程規模不斷的擴大,電氣自動化技術在電氣工程中的作用也越來越大。在社會主義市場經濟當中,隨著市場競爭越來越激烈,我國電氣工程要想在市場中取得發展,不斷滿足現代化經濟快速發展的需要,就必須提高電氣工程自動化的辦公效率,利用人工智能技術,對企業辦公實行自動化控制,從而有效的改善電氣工程運行環境,提高經濟效益,促進經濟發展。
【參考文獻】
[1]徐志國.人工智能(AI)在電力系統中的應用[J].現代電子技術,2013,06(21):24―25.
[2]王同文,管霖,張堯.人工智能技術在電網穩定評估中的應用綜述[J].電網技術,2011,01(12):136―137.
[3]李華勇,王詩明,王華.電網智能操作票管理系統的研制與開發[J].江西電力,2012,10(06):104―105.
[4]毛鋼元,劉志國.智能控制系統設計方法的比較研究[J].淮陰工學院學報,2010,10(05):198―199.
[5]孫竹梅,張麗香.人工智能技術在國內電廠中的應用研究[J].電力學報,2011,08(02):105―106.
關鍵詞:訊飛超腦計劃;人工智能;未來生活
中圖分類號:TP18 文獻標識碼:A 文章編號:1671-2064(2017)01-00218-01
人工智能包含三個層次:計算智能、感知智能和認知智能,訊飛超腦計劃是包含模擬人腦的知識表示與推理、類人學習機制與新知識的獲取、機器加載專業知識成為專門的教育領域。訊飛超腦計劃是基于全球關于人工神經網絡的深度學習研究,簡單來說就是希望未來訊飛超腦計劃能夠將人工智能從只是簡單地能聽會說到能夠深度思考相關問題的科技轉變。人工智能的不斷開拓創新是為了幫助人類能夠更好地生活,我們應該注重人工智能的發展推進,將其廣泛合理地應用到生活的實際中去。
1 訊飛超腦計劃目前取得的階段學習研究成果
1.1 訊飛超腦計劃關于我國現階段關于高中生學習教育的人工智能成果
隨著近年來教育電子多媒體設備的投入普及使用,使目前的高中老師在課堂上更習慣用電子化的教學方式來替代傳統的板書課本單一枯燥的教學,與此同時,現階段高中生也同樣具備使用移動互聯網的條件,這樣就使得科大訊飛超腦計劃的教育產品可以形成以下的模式如圖1所示。
采用此智能的學習模式可以使我國的高中生接受公平的最好的教育,這就需要借助人工智能的幫助來使老師提高自身的教育水平,使高中生豐富并開闊自身的視野。課堂教學包括了在線課堂、暢言交互式多媒體教學系統以及暢言智能語音等,這種新穎的課堂教學模式使原本單一的教學方式變成了思想上任意遨游的知識海洋;智能考試包含了標準考場、英語四六級網上閱卷、普通話與英語口語測試等方面,智能考試系統從字跡工整的程度、詞匯量的豐富度、語法的正確性與通順性等多個方面來評判考試試卷,加上多年來的不斷改進,人工智能的評判方法跟相關專家的人工試卷評判的相似度相差無幾,很大程度地增加了試卷評判的效率性與公平性;學習產品與教育評價更是覆蓋到了從低到高的各個層面的產品組織結構,更有利于高中生的學習與應試教育的公平性。
1.2 訊飛超腦計劃對于提高人類生活水平的成果
隨著人工智能技術在經濟、教育、文化、娛樂等領域的不斷應用,使人們的生活質量水平得到了很大程度的提高,人工智能帶來的方便快捷對于人類的發展進化與物質文化的進步產生了不可忽視的作用。隨著訊飛超腦計劃的推出,一方面,可以把人類從繁重的勞動中解放出來,很大程度地提高人類生產生活的效率與質量;另一方面,人工智能的進步會極大地革新人類的思維方式,使人們能夠多角度地認知世界,加深對人類對自身所處的宇宙地位的思考,利于人不斷地探索奧秘,進一步推進人類社會的進步。
2 訊飛超腦計劃下人工智能對于未來生活的影響及其發展趨勢
2.1 訊飛超腦計劃下人工智能對未來生活的影響
由于訊飛超腦計劃是感知智能結合認知智能的再創新,使得未來機器將會實現高水平的感知智能,具有更多的包括語音識別、手寫識別以及圖像識別的更多智能感知能力與實現包括智能客服、人機交互等的取代人類腦力勞動的認知智能突破。所以說訊飛超腦計劃下的人工智能在未來的教育、經濟、文化、社會結構等未來生活的各個方面都會產生重大影響。在教育上,人工智能的應用優化了課堂結構,使學生能夠實時接受外界的新知識以及與時俱進的教育模式改革;在經濟上,人工智能的高效能與高效率會明顯提高經濟效益,用人工智能來進行財務管理有助于縮減不必要的人工勞務開支與相關的培訓費用,利于經濟的變革與提高;在文化上,人工智能對于人類語言文化與圖像處理上的優勢日益凸顯出來,可以確定的是人工智能的發展將會深入到人類生活的各個層面中去。
2.2 訊飛超腦計劃下人工智能的未來發展趨勢
隨著人工智能的不斷演進,人工智能從最初能存會算的計算智能階段,到后來的能聽會說、能看會認的感知智能階段,最后再到訊飛超腦計劃下提出的讓機器能理解、會思考的認知智能階段,未來的人工智能在語言理解、知識表達、聯想推理以及自主學習等方面都將會取得很大的進展。
3 結語
人工智能對于未來生活的影響是多方面的,在未來生活的各個方面都十分顯著。與此同時,訊飛超腦計劃下的人工智能不斷的改革創新與發展,也將更快地推動人類的發展,人工智能與人類的生活是互相影響又相互制約的。人工智能的不斷發展給人類的未來生活帶來了很大程度的改變,人類在不斷開拓人工智能的領域時也應不斷提高自身能力與素養,以適應人工智能帶來的不斷創新和改變。
參考文獻:
[1]張妮,徐文尚,王文文.人工智能技術發展及應用研究綜述[J].煤礦機械.2009,30卷(2).
1人工智能技術的綜述
人工智能技術是以計算機技術為基礎,融合多門學科的綜合性科學技術,其主要是通過計算機模擬構建人的智能,并且創建機器人系統和專家系統實現對電氣自動控制系統的智能化操作。人工智能技術的突出特點是:一是操作性。人工智能技術主要是依托計算機的控制實現對電氣設備的控制,因此人工智能技術具有很強的邏輯性,便于控制人員進行操作;二是價值大。人工智能技術不僅融合了計算機技術,而且其還實現了對電氣設備的自動化控制與監測,實現了以較小的投入獲得更大的經濟效益的目的。比如通過人工智能技術可以減少人工操作環節,進而為企業節省相當多的人力資源成本費用;三是準確性比較高。人工智能技術主要是計算機依據人的智能建立計算機控制系統,實現對電氣設備的精確性操作,比如利用人工智能技術可以對電氣設備的運行情況進行智能檢測與處理,避免了人工檢測所存在的弊端。
2人工智能技術在電氣自動化控制系統中應用的必要性
人工智能技術的最大優勢就是通過對電氣控制系統信息的收集、研究,制定出具體的有效處理措施,從而代替傳統的依靠人腦進行操作的模式。將人工智能技術應用到電氣自動化控制系統中具有重要的意義:
2.1能夠有效解決電氣自動化控制過程中存在的病態結構問題
電氣自動化控制過程中因為電氣設備精密度越來越高,因此在運行過程中所出現的病態結構很難應用傳統的方式表達出來,而人工智能技術則可以有效解決此類問題,其完全有能力利用定量與定性相結合的控制方式對控制系統進行計算與分析。
2.2實現自動控制系統的數據采集與處理功能
將人工智能技術應用到電氣自動化控制中能夠依托專家系統對電氣設備進行實時監視,并且對相關信息進行自動收集與儲存,一旦發現存在潛在故障或者存在事故的事件,人工智能技術就會自動采取相應的控制方式,對故障進行自動處理,進而避免了電氣系統故障的進一步擴大化。
2.3簡化了人工操作過程,降低了人工操作造成的損失
人工智能技術通過計算機設備就可以實現對電氣設備的自動化控制,比如電氣系統的人工智能化控制系統就可以通過鼠標對控制開關進行自動控制,并且對勵磁電流進行調整。同時電氣人工智能控制系統還設定了應用管理權限,限制了相應操作人員的權限,實現了專人專崗制度,細化了操作責任制度。
3人工智能技術在電氣自動化控制中應用的思路分析
3.1人工智能技術在電氣自動化設備中的應用
我們知道電氣自動化控制系統屬于非常負責的控制系統,其不僅包含復雜的元件,而且還需要操作人員嚴格按照自動化控制系統的要求進行操作,而將人工智能技術應用到電氣設備中可以實現計算機的自動化操作,最重要的就是可以代替傳統的需要人工進行設備檢測的落后模式,實現了對電氣設備的運行狀態、故障檢測以及維修意見等一體的功能,降低了人工操作的失誤性,提高了電氣設備的應用壽命,為企業節省了大量的成本。
3.2人工智能技術在電氣控制過程中的應用
將智能技術應用到電氣自動化控制過程中,是人工智能技術發展的重要動力,通過人工智能化的電氣控制系統不僅可以提高電氣設備的工作效率,而且還可以降低電氣自動化控制中的故障發生率。人工智能技術主要師模糊控制、專家控制以及神經網絡控制和集成智能控制。本文以專家控制為例,專家控制就是將專家系統的設計規范和運行機制與電氣控制劉楠相結合實現實時控制系統的設計,其主要是對自動控制的知識獲取、表示以及推理機制的建立。
3.3在事故和故障診斷中人工智能技術的應用分析
人工智能技術在電氣設備故障中的作用是非常大的,尤其是對發動機的故障檢修是具有重要作用的,我們知道在電氣設備中由于其結構比較復雜,依靠人工很難對其進行深入的檢測,因此需要借助人工智能技術實現對設備的檢修。我們以變壓器為例,將智能技術應用到變壓器的故障檢修中首先就是先收集電壓器油體中分解的氣體,然后通過對油體氣體的分析,找出故障的原因,進而自動形成解決措施。這樣有效避免了人工檢測所出現的失誤現象。另外人工智能技術在電氣設備操作中的應用價值也比較大。通過人工智能技術可以實現電氣自動化控制環節的簡單化,比如在機床加工中,如果運用人工智能技術則能夠有效降低機床操作的復雜性,并且能夠對機床的運行信息進行收集與儲存,便于日后對相關信息的查詢。
4結束語
關鍵詞:人工智能;智能營銷;營銷趨勢;營銷挑戰
一、引言
隨著人工智能技術的快速發展,越來越多的企業將人工智能技術應用到企業的日常生產經營活動中來。NarrativeScience和國家商業研究所的報告顯示,在2016年僅有38%的企業表示引用了人工智能技術,而到了2017年這一數字迅速增長到了61%。與此同時人工智能技術在營銷領域的應用也越來越廣泛,在零售行業,人工智能可以通過自我學習,為消費者添加標簽,描繪用戶畫像;在網絡消費場景,智能人工助理可以幫助營銷人員及時在線回答用戶問題。人工智能的應用讓消費者與企業的互動更加頻繁,這也給企業營銷活動本身帶來了如隱私泄露、過度營銷、用戶倦怠等問題。如何正確處理人工智能技術在營銷領域的應用問題,成為了學者們日益關注的重點。以往的研究已經從人工智能營銷的技術基礎、概念、隱私擔憂等方面進行了分析,本文將從人工智能營銷的內涵、趨勢、挑戰等方面進行梳理研究,希望能夠對人工智能態勢下的市場營銷有更加全面的認識,為企業應對人工智能營銷活動中的問題提供有價值的參考。
二、人工智能態勢下的市場營銷
(一)智能營銷的內涵
智能營銷,是伴隨著人工智能應用的發展而產生的一個新的營銷概念。智能營銷不等同于電子營銷,它是建立在大數據、人工智能、云計算等綜合技術基礎上的一種智能化運作模式(汪濤2014),是可以模仿營銷人員的部分行為活動的過程。隨著人工智能技術在營銷領域的應用,智能化的設備通過仿真、思考、行動等模式完成了營銷人員所需要進行的一部分工作,深刻改變了營銷思維和方式。作為智能經濟條件下的新產物,目前學者們對智能營銷還沒有形成一致的概念界定。但是隨著對人工智能的逐步深入了解,業界逐漸形成了一種共識,即它是企業借助計算機網絡、移動互聯網等智能技術來進行營銷活動的各種新思維、新方法、新工具的一種創新營銷新概念(常亞平2018),它包括智能識別、智能存儲、智能執行等多個方面。
(二)智能營銷的技術基礎
人工智能營銷的興起離不開技術的支持,根據以往文獻的研究,可以將智能營銷發展的技術基礎大致歸為三個方面:首先,移動互聯網和5G技術為智能營銷發展提供了海量數據來源的保障。智能營銷發展的重要基礎就是數據,持續可靠的數據獲取是智能營銷所需的核心技術之一。隨著移動互聯網和5G技術的發展,營銷活動借助虛擬現實技術、仿真技術、人工生物智能技術廣泛深入到消費者的工作、娛樂、生活、消費等日常行為活動中,全方位地記錄了消費者的行為數據,為智能營銷的后續分析處理工作提供了海量的數據信息來源。其次,云計算幫助智能營銷完成了復雜的數據計算和處理分析。移動互聯網時代,大數據的發展使網絡數據成幾何倍增長,如何計算和處理分析這些海量數據成為了智能營銷發展所必須解決的重要問題。云計算技術憑借強大的數據計算能力,很好地解決了人工智能技術應用過程中的海量數據處理問題,通過多維度數據的連接實現了萬物互聯,從而使消費者和智能設備的交互體驗更加完善,營銷場景也因及時準確的數據分析而更加智慧化。最后,人工智能商業化應用技術為智能營銷發展提供了網絡應用環境。德勤2019年《全球人工智能發展白皮書》顯示,當前人工智能技術已進入全方位商業化階段,并預測全球人工智能市場在未來幾年會經歷現象級增長(錢明輝2019)。我國也出臺了相應政策來支持人工智能商業化應用的發展,2019年我國從事人工智能業務企業數量居全球第二。人工智能商業化的發展環境以及人工智能商業化應用技術的支持,為智能營銷的發展創造了良好的外部網絡應用環境。
(三)人工智能在營銷中的應用體現
人工智能技術在營銷中的應用,使營銷活動體現出了新的特點,如:視覺、聽覺、觸覺等多種形態的新互動方式、個性化需求的預測等。根據營銷活動的不同過程階段,可以從四個方面來分析人工智能在營銷中的應用體現。1.營銷調查研究階段。營銷調查研究是營銷活動的起點,通過提前的調研企業可以了解市場占有情況、消費者意愿、目標消費群體需求等重要信息。大數據技術以及人工智能技術的應用,極大地提高了企業營銷活動前期的營銷調研效率。消費者在各種生活消費場景中會留下自己的痕跡和使用信息,人工智能技術會幫助企業將海量的用戶數據進行歸類,如賬戶數據、交易數據、瀏覽數據等,并利用這些數據進行用戶畫像,從而準確分析出消費者的日常消費偏好、消費方式等信息,幫助營銷人員獲取營銷調研后的第一手分類數據。2.營銷策略的制定階段。人工智能技術從全網智能抓取相關數據進行分析,并智能分析出最新熱度關注點,幫助營銷人員完成尋找吸引消費者的創新點環節,擺脫了以往只依賴于營銷人員自身經驗判斷和小范圍營銷調研結果的限制。同時借助仿真技術、生物識別等技術,人工智能技術所創造的“人工腦”可以完成營銷策略制定過程中的一部分思考工作,如創意篩選、優化等方面。3.營銷執行階段。以往的營銷推廣活動,需要營銷人員提前進行宣傳媒介的選擇并且派大量人員進行實地配合,受限于地點、經費等外部因素。而人工智能技術根據網絡熱度數據分析,自行篩選出適合企業產品宣傳的網絡平臺,并且根據用戶使用偏好數據測算出適合的營銷時間點、次數等,在用戶進行相關網絡訪問時個性化推送符合該用戶需求特征的營銷方案,如喜馬拉雅會根據用戶年齡、性別、收聽歷史記錄等自動推送相關收聽圖書資源和購買活動等。4.營銷效果的評估階段。以前的營銷活動效果評估需要事后進行監測,而人工智能技術的應用幫助企業實現了實時監測,系統自動在全網絡進行相關內容的數據抓取和分析處理,并將監測效果及時反饋給營銷人員,方便營銷人員根據消費者反應及時修改營銷方案,降低了突發事件對企業營銷活動的影響。
三、人工智能帶來的營銷管理新趨勢
人工智能技術在營銷領域的應用深刻地改變了企業的營銷思維和營銷方式,也讓營銷管理活動有了新發展,對于人工智能帶來的營銷管理新趨勢可以從下面幾個方面來理解:一是技術驅動營銷變革。智能技術將成為下一代營銷變革的新支撐。目前,仿真技術和人工生物智能技術的初步使用已經能夠幫助智能設備進行部分營銷工作中的思考問題。營銷專家智能系統可以實現專業知識的傳遞和學習,在營銷專家的訓練下智能系統會增長解決問題所需的知識,并向用戶提供解決問題的辦法。電子自動訂貨系統,會根據企業線上線下的銷售數據自動進行分析,智能識別暢銷品和滯銷品,并根據實際情況自動交換訂單信息,減少營銷人員在了解銷售狀況和消費者偏好等信息時所投入的時間成本。人工智能技術的應用帶來了營銷理念、方法、手段、工具等各個方面的改變,未來如何利用好人工智能技術來幫助企業進行營銷活動是營銷人員需要關注的重點。二是營銷方式的多元化和營銷推薦的大規模定制化。人工智能技術的應用給營銷方式帶來了巨大的變革,短視頻營銷、直播營銷等新型營銷方式使企業營銷活動不再局限于傳統線下和網絡頁面廣告等方式。這種多元化的智能營銷方式,可以更加廣泛深入地獲取消費者的各種使用數據信息,如抖音小視頻會根據用戶關注信息來自動推送相關產品宣傳視頻。智能化的營銷方式讓大規模定制化成為可能,企業可以借助智能技術和數據處理技術實現對每個用戶的精準識別與記錄,從而為其個性化推薦相關信息,實現營銷個性化的批量自動生產。三是“AI+”智慧營銷帶來的跨場景營銷。“AI+短視頻”營銷、“AI+KOL”的粉絲營銷等不同營銷策略,在人工智能技術的支持下各自發揮所長,應用到營銷活動的各個環節當中。“AI+”的使用增強了消費者的互動體驗感和真實感,如唯品會的智能試裝功能可以幫消費者實現線上虛擬體驗,大大提升了消費者從“看”到“買”的效率,縮短了購買轉化時間。在移動互聯網時代,消費場景碎片化、消費行為流動化,人工智能技術的使用可以幫助企業處理復雜的消費使用數據,系統整合消費者在不同場景的多維行為數據,從而精準識別不同消費個體在不同消費場景下的差異化需求,結合消費者的實時場景,為消費者適時提供跨場景的營銷服務,突破圈層和場景的限制,擴大營銷推廣范圍,提升企業的56品牌宣傳度。四是基于智能識別、語音互動等技術的線上線下一體化智慧營銷。根據2018年人工智能應用行業報告,目前人工智能技術已經可以應用到零售的全鏈條環節,既可以線上進行用戶畫像和精準個性化推薦,也可以線下智能物流、智能選址、優化消費者行為分析和商品運營環節等,這種線上線下一體化智慧營銷,需要完整的人工智能技術體系的支持。通過分析消費者軌跡數據、可穿戴智能設備的身體數據以及社交消費平臺數據等信息,利用線上線下信息的同步傳輸、人臉識別等技術,人工智能可以及時捕捉消費者行為及心理需求,并實現精準匹配。
四、人工智能時代市場營銷面臨的挑戰
人工智能技術在營銷領域的應用給企業和消費者都帶來了極大的便利,但是技術都是具有兩面性的,我們必須理性對待人工智能技術,正視人工智能應用過程中產生的問題。根據以往文獻的研究,可以從以下幾個方面來認識人工智能時代市場營銷面臨的挑戰。一是人工智能背景下復合型營銷人才的不足,帶來的技術和營銷的進一步對接問題。當前,智能營銷領域的一個顯著問題就是技術與營銷的進一步深度銜接問題,懂技術、懂市場的復合型人才的不足使得企業在應用人工智能過程中出現很大障礙。一些機構掌握著最新智能技術,積累了海量數據;而另一些機構則了解市場,不掌握技術,技術應用與市場營銷之間的銜接出現了隔閡。人工智能技術在營銷的應用給所有領域的營銷人員都帶來了挑戰,人才和工作需求雙向失衡。企業必須培養復合型的營銷人才,引進新技術培訓課程,提升現有營銷人員的整體技術素質,從而幫助企業解決智能技術與營銷的進一步對接問題。二是人工智能營銷過程中暴露的數據隱私保護和流量造假問題。各種數據隱私新聞案件的曝光,讓越來越多的用戶對新技術的使用保持著高度敏感。大量未經用戶本人同意的數據非法監測和解讀嚴重干擾著消費者的日常生活,一些企業甚至利用智能技術對用戶個人信息進行預測分析來以此獲取用戶隱私。而流量數據造假問題更是進一步瓦解了消費者對網絡消費活動的信任,一些企業為了短期的盈利,利用內容剪切等網絡工具打造虛假流量信息,給消費者帶來了誤導,同時也嚴重干擾了正常的市場競爭秩序。為了能夠讓企業更有效地推進人工智能技術與營銷活動的銜接,必須及時懲治非法獲取消費者隱私的企業,營造良好的網絡使用環境,同時企業也要在內部加強管理,提升營銷人員的道德素養。三是全方位人工智能營銷環境下的消費者心理倦怠問題。人工智能技術可以給消費者推薦各種個性化信息,但這種根據消費者使用痕跡來進行持續性的精準推薦很難不讓消費者產生厭倦心理。隨時隨地的廣告推薦、跨屏的無廣告攔截、用戶瀏覽記錄的跟蹤推薦等行為,在智能技術的推動下變得更加自動頻繁。雖然人工智能技術可以幫助企業精準分析用戶數據,但數據也不能完全反映消費者的內心,企業要避免對智能技術的完全盲從,以防消費者產生厭倦心理。營銷活動是對人進行的活動,因此企業也要關注營銷人員的營銷經驗,不能以技術決定一切,要將技術與人的主觀感受相結合,真正做到從消費者本身需求出發。
五、結論
人工智能在營銷領域的應用目前還處于初步發展期,企業在應用人工智能技術時必須理性看待人工智能技術。既要看到人工智能給企業營銷帶來的數據分析、精準識別等便利,也要看到人工智能應用帶來的技術陷阱、用戶隱私等問題。當然,人工智能技術在營銷領域的應用未來還將有更進一步的發展,企業也要及時進行探索研究。本文僅從理論層面梳理分析了人工智能在營銷領域應用的相關問題,未來還可以在其他方面進行深入研究:如何更好地解決人工智能應用過程中帶來的隱私泄露問題,從而提升消費者的使用體驗;人工智能的特征如何對消費者的行為產生影響;智能互動方式的改變對營銷活動的影響,等等。
參考文獻:
[1]高山行,劉嘉慧.人工智能對企業管理理論的沖擊及應對[J].科學學研究,2018(11).
[2]常亞平,王良燕,黃勁松,等.3D(大數據、數字化和發展中)背景下的營銷戰略與轉型專欄介紹[J].管理科學,2018(5):1-2.
[3]Shankarv.Howartificialintelligence(AI)isreshapingretailing[J].JournalofRetailing,2018,94(4):vi-xi.
[4]汪濤,謝志鵬.擬人化營銷研究綜述.外國經濟與管理,2014(1):38-45.
[5]Wangtao,XIEZhipeng.Areviewoftheliteratureofper-sonificationmarketing[J].ForeignEconomics,Manage-ment,2014(1):38-45.
[6]錢明輝,徐志軒.基于機器學習的消費者品牌決策偏好動態識別與效果驗證研究[J].南開管理評論,2019(3):66-76.
[7]王先慶,雷韶輝.新零售環境下人工智能對消費及購物體驗的影響研究:基于商業零售變革和人貨場體系重構視角[J].商業經濟研究,2018(17):5.
【關鍵詞】人工智能;人臉識別;神經網絡
1 人工智能簡介
人工智能(Aritificial Intelligence,AI)是一門綜合了計算機科學、控制論、信息論、神經生理學、心理學、語言學、哲學等多種學科互相滲透而發展起來的一門交叉學科[1],從誕生至今已有近60年的歷史。人工智能是研究如何制造智能機器或智能系統,來模擬人類智能活動的能力,以延伸人們智能的科學[2]。人工智能不在乎計算機是依靠某種算法還是真正理解人類行為,只需要其能表現出與人相似的行為,它是計算機科學中的―個分支,涉及智能機器的研究、設計和應用。人工智能的研究目標在于怎樣用計算機來模仿和執行人腦的某些功能,并開發相關的技術以及產品,建立有關的理論。人工智能可分為:基本人工智能,包括知識表示、推理;高級人工智能,如模糊邏輯、神經網絡、專家控制;計算智能,如遺傳算法、群集智能。人工智能研究領域的三種主要觀點[3]:符號主義又稱為邏輯主義或計算機學派,其認為符號是人類的認識基元,同時人認識的過程即是對符號的計算與推理的過程;聯結主義又被叫做仿生學派,其主要原理是人類的智能是由人腦的生理結構和工作模式所決定;行為主義又被稱作進化主義、控制論學派,其主要原理是智能取決于感知和行動,它不需要知識、也不需要知識的表示與推理[4]。
2 人臉識別
人臉識別是指對輸入的人臉圖像或者視頻,判斷其中是否存在人臉,如果存在人臉,則進一步給出每張人臉的位置、大小和各個主要面部器官的位置信息,并且依據這些信息,進一步提取每張人臉蘊含的身份特征,并將其與已知人臉庫中的人臉進行對比,從而識別每張人臉的身份。人臉識別的研究起源于19世紀末,其發展大致分成三個階段[5]:第一階段以面部特征為主要研究對象;第二階段稱為人機交互式識別階段,分為采用幾何特征參數來表示人臉正面圖像和統計識別為基礎的方法;第三階段才被稱為真正的自動識別階段,人臉識別技術進入實用階段。
3 常用的人臉識別方法
人臉識別的技術與方法一般分為:基于幾何特征的方法和基于模板匹配的方法。對于基于幾何特征方法而言,首先檢測出眼耳口鼻等臉部主要部件的位置和大小,然后分析這些部件的總體幾何分布關系以及相互之間的參數比例來識別人臉。基于模板的方法也叫做基于表象的方法,利用模板與整個人臉圖像的像素值之間的自相關性進行人臉的識別[6]。通過分析常用的人臉識別方法,本文將人臉識別的方法分為基于幾何特征的方法、基于模型的方法、基于統計的方法、基于神經網絡的方法。
3.1 基于幾何特征的方法
最早的基于幾何特征的方法由Bleclsoe提出,該方法將幾何特征定義為面部特征點之間的距離和比率,通過最近鄰方法來識別人臉,但必須手動定位面部特征點,因此屬于半自動系統。側影識別是另一個基于幾何特征的人臉識別方法,其原理是通過提取人臉的側影輪廓線上特征點,將側影轉化為輪廓曲線,提取其中的基準點,然后識別這些點之間的幾何特征。
基于幾何特征的方法非常直觀,能快速識別人臉,只需要較少內存,光照對特征的提取影響不大,缺點是當人臉變化時,特征的提取不精確,并且由于對圖像細節信息的忽略,導致識別率較低,因此近年來少有發展。
3.2 基于模型的方法
隱馬爾可夫模型(Hidden Markov Model,HMM)是一種常用的模型,基于HMM的方法被Nefian和Hayes引入到人臉識別領域,它是一組統計模型,用于描述信號統計特性。Cootes等人提出主動形狀模型(Active Shape Model,ASM),對形狀和局部灰度表象建模,定位新圖像中易變的物體[5]。Lanitis等用該方法解釋人臉圖像,其原理是使用ASM找出人臉的形狀,然后對人臉進行切割并歸一到統一的框架,通過亮度模型解釋和識別與形狀無關的人臉。
主動表象模型(Active Appearance Model,AAM)通常被看作是ASM的一種擴展,一般作為通用的非線性圖像編碼模式,通用的人臉模型經變形處理后與輸入圖像進行匹配,并將控制參數作為分類的特征向量。
3.3 基于統計的方法
基于統計的方法將人臉圖像視為隨機向量,采用一些統計方法對人臉進行特征分析,這類方法有較為完善的統計學理論的支持,因此發展較好,研究人員也提出了一些比較成功的統計算法。
特征臉方法由Turk和Pentland提出,該方法中人臉由各個特征臉擴展的空間表示,雖然人臉信息可以有效地表示,但不能對其進行有效鑒別和區分。為取得更好的人臉識別效果,研究者又提出使用其他的線性空間來代替特征臉空間[6]。Moghaddam等人提出了貝葉斯人臉識別方法,用基于概率的方法來度量圖像相似度,將人臉圖像之間的差異分為類間差異和類內差異,其中類間差異表示不同對象之間的本質差異,類內差異為同一對象的不同圖像之間的差異,而實際人臉圖像之間的差異為兩者之和。如果類內差異大于類間差異,則認為兩人臉圖像屬于同一對象的可能性大。
奇異值分解(Singular Value Decomposition,SVD)作為一種有效的代數特征提取方法,奇異值特征具有多種重要性質,如鏡像變換不變性、位移不變性、旋轉不變性以及良好的穩定性等,因此人臉識別領域也引入了奇異值分解技術。
3.4 基于神經網絡的方法
神經網絡用于人臉識別領域也有較長的歷史,Kohoncn最早將自組織映射(Self-Organizing Map,SOM)神經網絡應用于人臉識別,即使當輸入人臉圖像有部分丟失或者具有較大噪音干擾時,也能完整的恢復出人臉。人臉識別中最具影響的神經網絡方法是動態鏈接結構(Dynamic Link Architecture,DLA),對網絡中語法關系的表達是該方法最突出的特點。
用于人臉識別的神經網絡還有:時滯神經網絡(Time Delay Neural Net-works,TDNN),是MLP的一種變形,徑向基函數網絡(Radial Basis Function Network,RBFN)以及能有效地實現低分辨率人臉的聯想與識別的Hopfield網絡等[6]。
與其他人臉識別方法相比,神經網絡方法具有特有的優勢,人臉圖像的規則和特征的隱性表示可通過對神經網絡的訓練獲得,避免了特征抽取的復雜性,有利于硬件的實現,缺點是可解釋性較弱,要求訓練集中有多張人臉圖像,因此只適合于小型人臉庫。人工智能應用在人臉識別、模式識別方面能夠提高運行效率、減小計算量小、程序的代碼編寫更為簡潔。
【參考文獻】
[1]武海麗.初識人工智能[J].科技創新導報,2009,02:196.
[2]王甲海.創新型人工智能教育改革與實踐[J].計算機教育,2010(08):136.
[3]肖斌,薛麗敏,李照順.對人工智能發展新方向的思考[J].信息技術,2009,12:166-168.
[4]朱祝武.人工智能發展綜述[J].中國西部科技,2011,10(17):08-10.