歡迎訪問愛發表,線上期刊服務咨詢

生物燃料論文8篇

時間:2022-11-04 11:35:00

緒論:在尋找寫作靈感嗎?愛發表網為您精選了8篇生物燃料論文,愿這些內容能夠啟迪您的思維,激發您的創作熱情,歡迎您的閱讀與分享!

生物燃料論文

篇1

關鍵詞:微生物燃料電池 產電 新能源

中圖分類號:X703.1 文獻標識碼:A 文章編號:1672-3791(2013)04(c)-0003-02

微生物燃料電池(Microbial fuel cells, MFCs)是一種新興的高效的生物質能利用方式,它利用細菌分解生物質產生生物電能,具有無污染、能量轉化效率高、適用范圍廣泛等優點。因此MFCs逐漸成為現今社會的研究熱點之一。

1 微生物燃料電池的工作原理

圖1是典型的雙室結構MFCs工作原理示意圖,系統主要由陽極、陰極和將陰陽極分開的質子交換膜構成。陽極室中的產電菌催化氧化有機物,使其直接生成質子、電子和代謝產物,氧化過程中產生的電子通過載體傳送到電極表面。根據微生物的性質,電子傳送的載體可以為外源、與呼吸鏈有關的NADH和色素分子以及微生物代謝的還原性物質。陽極產生的H+透過質子交換膜擴散到陰極,而陽極產生的電子流經外電路循環到達電池的陰極,電子在流過外電阻時輸出電能。電子在陰極催化劑作用下,與陰極室中的電子接受體結合,并發生還原反應[1]。

下面以典型的葡萄糖為底物的反應為例說明MFCs的工作原理,反應中氧氣為電子受體,反應完成后葡萄糖完全被氧化[2]。

2 微生物燃料電池的分類

目前為止,MFCs的分類方法沒有統一標準,通常有以下幾種分類方法。

(1)基于產電原理進行分類,包括氫MFCs、光能自養MFCs和化能異養MFCs。氫MFCs的原理是利用微生物制氫,同時利用涂有化學催化劑的電極氧化氫氣發電;光能自養MFCs是利用藻青菌或其他感光微生物的光合作用直接將光能轉化為電能;而化能異養MFCs則是在厭氧或兼性微生物的作用下,從有機底物中提取電子并轉移到電極上,實現電力輸出[3]。

(2)基于電池構型進行分類,包括單極室微生物燃料電池、雙極室微生物燃料電池和多級串聯MFCs。圖1中的微生物燃料電池即為雙極室結構,電池通過質子交換膜分為陽極室和陰極室兩個極室。單極室MFCs則以空氣陰極MFCs為主,將陰極與質子交換膜合為一體,甚至是去除質子交換膜。為了提高產電量,將多個獨立的燃料電池串聯,就形成了多級串聯MFCs[4]。

(3)基于電子轉移方式分類,包括直接微生物燃料電池和間接微生物燃料電池兩類。直接微生物燃料電池是指底物直接在電極上被氧化,電子直接由底物分子轉移到電極,生物催化劑的作用是催化在電極表面上的反應。間接微生物燃料電池的底物不在電極上氧化,而是在電解液中或其它地方發生氧化后,產生的電子由電子介體運載到電極上去[5]。

(4)基于電子從細菌到電極轉移方式進行分類,可分為有介體MFCs和無介體MFCs兩類。電子需要借助外加的電子中介體才能從呼吸鏈及內部代謝物中轉移到陽極,這類為有介體MFCs。某些微生物可在無電子傳遞中間體存在的條件下,吸附并生長在電極的表面,并將電子直接傳遞給電極,這稱為無介體MFCs。

3 電池性能的制約因素[6~7]

迄今為止,MFCs的性能遠低于理想狀態。制約MFC性能的因素包括動力學因素、內阻因素和傳遞因素等。

動力學制約的主要表現為活化電勢較高,致使在陽極或者陰極上的表面反應速率較低,難以獲得較高的輸出功率[8]。內電阻具有提高電池的輸出功率的作用,主要取決于電極間電解液的阻力和質子交換膜的阻力。縮短電極間距、增加離子濃度均可降低內阻。不用質子交換膜也可以大大降低MFC的內阻,這時得到的最大功率密度為有質子交換膜的5倍,但必須注意氧氣擴散的問題[9]。另一個重要制約因素為電子傳遞過程中的反應物到微生物活性位間的傳質阻力和陰極區電子最終受體的擴散速率。最終電子受體采用鐵氰酸鹽或陰極介體使用鐵氰化物均可以獲得更大的輸出功率和電流。

另外,微生物對底物的親和力、微生物的最大生長率、生物量負荷、反應器攪拌情況、操作溫度和酸堿度均對微生物燃料電池內的物質傳遞有影響[10]。

4 微生物燃料電池的應用

(1)廢水處理與環境污染治理。

微生物燃料電池可以同步廢水處理和產電,是一種廢水資源化技術。把MFC用于廢水處理是其最有前景的一個應用方向,也是當前微生物燃料電池的研究熱點之一。同時,在生物脫氮、脫硫、重金屬污染的生物治理等方面MFCs也具有不可忽視的作用。

(2)海水淡化。

普通的海水淡化處理技術條件苛刻,需要高壓、高效能的轉化膜,有的還要消耗大量的電能,故不能大規模的處理,并且成本較高,難以有效地解決海水淡化問題。如果找到一種高效的產電微生物和特殊的PEM交換膜,那么MFC,就可以達到海水淡化的目的,而且具有能耗低,環保和可持續的優點。利用MFC淡化海水也將成為具有發展潛力的研究方向[11]。

(3)便攜式電源。

微生物燃料電池能夠利用環境中自然產生的燃料和氧化劑變為電能,用于替代常規能源。可以為水下無人駕駛運輸工具、環境監測設備的長期自主操作提供電源。

(4)植物MFCs。

通過光合作用,植根在陽極室的綠色植物將二氧化碳轉換為碳水化合物,在根部形成根瘤沉積物;植物根系中的根瘤沉積物被具有電化學活性的微生物轉化為二氧化碳,同時產生電子。這種植物MFCs能夠原位將太陽能直接轉換為電能[12]。

(5)人造器官的動力源[13]。

微生物燃料電池可以利用人體內的葡萄糖和氧氣產生能量。作為人造器官的動力源,需要長期穩定的能量供給,而人體內源源不斷的葡萄糖攝入恰好可以滿足MFC作為這種動力源的燃料需要。

5 微生物燃料電池技術研究展望

MFCs技術正在不斷成長并且已經在許多方面取得了重大突破。但是,由于其功率偏低,該技術還沒有實現真正的大規模實際應用。基于其產電性能的制約因素,今后的研究方向主要可歸納為以下幾點。

(1)深入研究并完善MFCs的產電理論。MFCs產電理論研究處于起步階段,電池輸出功率較低,嚴重制約了MFCs的實際應用。MFCs中產電微生物的生長代謝過程,產電呼吸代謝過程以及利用陽極作為電子受體的本質是今后的研究重點[14]。

(2)篩選與培育高活性微生物。目前大多數微生物燃料電池所用微生物品種單一。要達到實際應用的目的,需要尋找自身可產生氧化還原介體的高活性微生物和具有膜結合電子傳遞化合物質的微生物。今后的研究應致力于發現和選擇這種高活性微生。

(3)優化反應器的結構。研究與開發單室結構和多級串聯微生物燃料電池。利用微生物固定化技術、貴金屬修飾技術等改善電極的結構和性能。選擇吸附性能好、導電性好的材料作為陽極,選擇吸氧電位高且易于撲捉質子的材料作為陰極[15]。

(4)改進或替代質子交換膜。質子交換膜的質量與性質直接關系到微生物燃料電池的工作效率及產電能力。另外,目前所用的質子交換膜成本過高,不利于實現工業化。今后應設法提高質子交換膜的穿透性以及建立非間隔化的生物電池[16]。

6 結語

MFCs作為一種可再生的清潔能源技術正在迅速興起,并已逐步顯現出它獨有的社會價值和市場潛力。隨著研究的不斷深入以及生物電化學的不斷進步,MFCs必將得到不斷地推廣和應用[17]。

參考文獻

[1] 李旭文.碳納米管和有序介孔碳在微生物燃料電池電極材料中的應用研究[D].華南理工大學碩士學位論文,2012.

[2] 張怡然,吳立波.微生物燃料電池在廢水處理中的應用進展[J].水資源與水工程學報,2010,21(6):100-104.

[3] 孫健,胡勇.有廢水處理新理念-微生物燃料電池技術研究進展[J].工業用水與廢水,2008,39(1):1-6.

[4] 陳少華,汪家權,程建萍.微生物燃料電池處理污染廢水的研究進展[J].環境污染與防治,2012,34(4):68-74.

[5]胡文娟.含氮雜環化合物對微生物燃料電池性能影響的研究[D].湖南大學碩士論文,2010.

[6] Liu H ,Cheng S,Logan BE. Power generation in fed—batch microbial fuel cells as a function of ionic strength,tempera—ture,and reactor configuration[J]. Environ Sci Technol,2005b,39(14):5488-5493.

[7] 關毅,張鑫.微生物燃料電池[J].化學進展,2007,19(1):74-79.

[8] 江世青,王亞南,尹遜亮.微生物燃料電池及其在污水處理方面應用的研究現狀[J].山東煤炭科技,2011(6):79-80.

[9] Liu H, Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane [J].Environ Sci Technol.,2004,38(14):4040-4046.

[10] Rabaey K, Lissens G, Siciliano SD, et al. Biotechnology Letters,2003,25:1531-1535.

[11] 何建瑜,劉雪珠,陶詩,等.微生物燃料電池研究進展[J].安徽農業科學,2013,41(2):785-788,793.

[12] 劉宏芳,鄭碧君.微生物燃料電池[J].化學進展,2009,21(6):1349-1355.

[13] 朱寧正.同步廢水處理及產能的微生物燃料電池[D].哈爾濱工程大學碩士論文,2009.

[14] 盧娜,周順桂,倪晉仁.微生物燃料電池的產電機制[J].化工進展,2008,20(7~8):1233-1240.

[15] 謝晴,楊嘉偉,王彬,等.用于污水處理的微生物燃料電池研究最新進展[J].水處理技術,2010,36(3):10-16.

篇2

關鍵詞:資源環境科學;文獻計量學;發展態勢;

作者簡介:王雪梅(1976-),女,重慶永川人,副研究員,主要從事科學計量學、GIS與文獻計量學集成研究.

資源與環境科學以人類生存和發展所依賴的地球系統特別是地球表層系統的特征和變化規律為主要研究對象,研究內容涉及地球科學及其分支學科,以及生命科學、化學、工程與材料科學、信息科學及管理科學的諸多分支學科領域。經濟快速發展對資源環境科學提出了巨大需求,中國科學院圍繞我國經濟社會發展的重大問題及其相關的資源環境與地球科學問題,在資源環境和地球科學領域取得了一系列研究成果[1~3]。利用WebofKnowledge平臺SCI-E數據庫,對2009—2014年中國科學院SCI論文及地球科學與資源環境科學領域論文產出進行統計,并與全球及中國論文產出相比較,了解中國科學院在地球科學與資源環境科學領域的研究產出及其發展狀況。

1數據來源與分析方法

從WebofScience的251個學科分類中遴選出與地球科學、環境/生態學相關的學科,根據學科分類在ScienceCitationIndexExpanded(SCI-E)數據庫檢索資源環境科學領域的相關論文,應用美國湯森路透公司的ThomsonDataAnalyzer文本挖掘軟件進行數據分析和制圖,對全球和中國的資源環境科學領域產出進行統計分析。

地球科學(Geosicence)領域包括:能源與燃料(Energy&Fuels)、地質工程(Engineering,Geological)、石油工程(Engineering,Petroleum)、地球化學與地球物理學(Geochemistry&Geophysics)、地理學(Geography)、地質學(Geology)、地球科學多學科(Geosciences,Multidisciplinary)、湖泊學(Limnology)、氣象與大氣科學(Meteorology&AtmosphericSciences)、礦物學(Mineralogy)、礦產與礦物加工(Mining&MineralProcessing)、海洋學(Oceanography)、古生物學(Paleontology)、遙感(RemoteSensing)、水資源(WaterResources);環境/生態學(Environment/Ecology)領域包括:土壤科學(SoilScience)、生態學(Ecology)、海洋工程(Engineering,Marine)、環境科學(EnvironmentalSciences)。

2015年2~3月在SCI-E數據庫對全球、中國、中國科學院的SCI論文產出進行檢索和統計,中國科學院檢索范圍包括署名中有“中國科學院”的論文,包括中國科學院各研究所及中國科學院大學(中國科學院研究生院),不包括未署名“中國科學院”的中國科技大學論文。

2中國科學院論文產出總體態勢

2009—2014年期間,SCI-E共收錄論文955.6萬篇,其中署名中國的論文有113萬篇,署名中國科學院的論文有15萬篇。圖1反映了全球、中國、中國科學院2009—2014年年度論文產出量變化。全球、中國、中國科學院的SCI論文分別以年均2%,14%和10%的速度增長。2014年與2009年相比,全球SCI論文增長近11%,中國增長約為93%,而中國科學院增長了62%,由圖2可見中國SCI論文增長速度遠高于全球論文增長速度。

圖3統計了中國SCI論文占全球百分比和中國科學院SCI論文占中國百分比,表明中國論文占全球的份額持續上升,而中國科學院論文占中國的份額則逐步有所下降,但中國科學院資源環境類研究所發表的SCI論文數量占中國科學院的份額穩中有升。從圖2也可見,中國科學院資源環境類研究所2014年與2009年相比,SCI論文增長了約92%,與中國SCI論文的增速很接近,高于中國科學院整體的論文增長速度。

將2009—2014年環境/生態學和地球科學領域各年論文按照被引頻次高低統計TOP1%,TOP10%,TOP20%和TOP50%論文的數量,以及中國和中國科學院相應級次TOP論文的數量,并統計中國占全球的比例和中國科學院占中國的比例(圖4)。

根據論文全部著者統計的結果表明,中國在全球資源環境科學研究領域各級次TOP論文中的比例基本為15%~20%,中國地球科學領域TOP論文數占全球的比例高于環境生態學領域,并且地球科學領域TOP1%的高水平論文比例很高。中國科學院在中國資源環境科學研究領域各級次TOP論文中的比例為26%~32%,中國科學院環境/生態學領域TOP論文數占中國的比例高于地球科學領域。

3資源環境科學領域的重點研究方向

基于SCI學科分類,分別對2009—2014年全球SCI論文最多的20個學科領域的論文數占全球SCI論文總數的比例、中國SCI論文最多的20個學科領域的論文數占中國SCI論文總數的比例,以及中國科學院SCI論文最多的20個學科領域的論文數進行統計。結果顯示,全球各學科領域中,生物學與生物化學發文最多,發文最多的20個學科領域主要側重于醫學和生命科學等,相比之下,中國產出偏重于材料科學以及化學、物理等相關學科領域,中國科學院在環境科學方面論文產出數量比例較高。

資源環境科學領域論文產出占全球自然科學領域論文產出的8%左右,中國該領域論文產出占中國SCI論文比例接近10%,中國科學院該領域論文產出占中國科學院SCI論文比例約為20%(圖5)。

2009—2014年,中國SCI論文占全球比例約為12%,而資源環境科學領域中國SCI論文占全球份額超過14%。其中,環境科學是全球、中國和中國科學院資源環境科學領域論文產出的最主要的領域。此外,中國在能源與燃料、遙感、地質學等方面論文產出占全球比例相對較高,而在生態學、古生物學等方面所占比例較低。中國科學院關于古生物學方面的SCI論文在中國資源環境領域論文中的比例最高,達到54%;此外,在土壤科學、地理學、湖泊學、生態學、氣象與大氣科學等方面的論文占中國的比例也較高,但在石油工程、海洋工程等方面所占比例較低,不足10%(圖6)。

圖7中,氣泡的大小表征資源環境各子領域占全球資源環境科學領域論文產出份額的大小,即點越大,該子領域論文數在全球資源環境領域中的比例越高;X軸表示資源環境子領域中國占全球論文的百分比,值越高表明該子領域中國占全球的比例越高;Y軸表示資源環境子領域中國科學院占中國論文的百分比,值越高表明該子領域中國科學院占中國的比例越高。氣泡大的那些子領域(如環境科學等)是全球資源環境科學研究比較多的熱點方向;右下角的那些子領域(如能源與燃料等)是中國資源環境科學相對比較有優勢的研究方向;左上角那些子領域(如古生物學等)是中國科學院資源環境科學相對比較有優勢的研究方向。

中國科學院資源環境類研究所2009—2014年發表的SCI論文主要涉及的學科領域包括:環境科學、生態學、地質學、工程學、氣象與大氣科學、農學、地球化學與地球物理學、化學、水資源、科學與技術、海洋與淡水生物學、地理學、植物學、海洋學等。

4主要研究機構的科學貢獻

中國科學院幾乎所有的研究機構都在SCI資源環境科學領域期刊發表過論文,2009—2014年根據全部著者統計超過100篇的研究所有50多個,在資源環境科學領域發表SCI論文較多的前10個研究所見表1,這些較多的研究所都屬于中國科學院資源環境類研究機構。

2009—2014年中國科學院27個資源環境類研究所以第一著者發表的SCI論文共有22032篇,其中,生態環境研究中心、地質與地球物理研究所、海洋研究所、地理科學與資源研究所、大氣物理研究所、廣州地球化學研究所、南海海洋研究所、寒區旱區環境與工程研究所等較多,第一著者的SCI論文數都在1000篇以上(表2)。

中國科學院資源環境類研究所論文的篇均被引次數為6.03次/篇,表2中的“表現不俗的論文篇數”統計的是這些研究所高于基準值的論文篇數,即當前總被引次數除以從年至2014年的累積年得到的年均被引6次及以上的論文[4]。生態環境研究中心、地質與地球物理研究所、廣州地球化學研究所的表現不俗論文都在150~200篇。

中國科學院資源環境類研究所被引頻次位于前10%的論文篇數,即研究所2009—2014年被引16次及以上的論文篇數,也是生態環境研究中心、地質與地球物理研究所、廣州地球化學研究所最多,都在260篇以上。

參考中國科學院文獻情報中心科學前沿分析中心設計科學貢獻指數[5],定義:

式中:Ci為中國科學院資源環境類第i個研究所科學貢獻指數,P10%i為第i個研究所被引前10%論文數量,Citedi為第i個研究所論文被引總頻次,n為中國科學院資源環境類研究所的數量。結果顯示,生態環境研究中心、地質與地球物理研究所、廣州地球化學研究所、海洋研究所、大氣物理研究所、地理科學與資源研究所的科學貢獻指數較高,都在0.1以上。

5結論與建議

通過以上分析可以看出:

(1)2009—2014年,中國科學院SCI論文增長了62%,高于全球11%的增長率,低于中國93%的增長率,但中國科學院資源環境類研究所的SCI論文增長了約92%,與中國論文增速相接近。

(2)中國在全球資源環境科學研究領域各級次TOP論文中的比例基本為15%~20%,中國科學院在中國資源環境科學研究領域各級次TOP論文中的比例為26%~32%,中國科學院環境/生態學領域TOP論文數占中國的比例高于地球科學領域。

(3)中國SCI論文占全球比例約為12%,在資源環境科學領域中國SCI論文占全球份額超過14%。中國科學院關于古生物學、土壤科學、地理學、湖泊學、生態學、氣象與大氣科學等方面的SCI論文在中國資源環境領域論文中的比例較高。

篇3

劉疏桐的名字和地溝油仿佛被捆綁成一個關鍵詞,很多人管他叫“地溝油哥”,他完全不介意,還笑說:“大家提到地溝油都想到我,說明他們知道我在做什么。”

2011年,“地溝油事件”將“食品安全”炒上熱搜榜時,道蘭環能的創始人劉疏桐正在“自行車比人多”的國家―荷蘭念書。

他本科在荷蘭讀商業物流專業,大三實習去了全球四大快遞公司之一TNT,被分到電動車項目組。在這里,他順理成章地接觸到綠色交通、新能源,并對此產生了興趣。

讀研究生時,他便選擇了能源管理專業。準備畢業論文期間,他看到了一則報道:SkyNRG―位于荷蘭的全球第一個商業生物航空燃料公司,正在將餐廚廢油加工為生物燃料用行。

“報道上說,SkyNRG到中國去采集地溝油,運到歐洲來,給生物航空燃料做原料。”為什么要從中國收購餐廚廢油呢?他帶著疑惑直接找到SkyNRG的相關負責人。剛好SkyNRG對中國市場很感興趣,劉疏桐便以“生物航空燃料原材料、廢棄物在中國的潛力”為題幫SkyNRG做調研,同時完成相關方向的研究生畢業論文。

畢業后,劉疏桐留在了這家由荷蘭航空和荷蘭另外一家能源公司合資的企業,專門做生物能源方面的工作。

其實SkyNRG更關注的是空氣污染問題,研發生物燃料供應航空等交通領域也是為了降低普通航油等化石燃料對大氣造成的污染。劉疏桐了解到,歐洲幾乎每一輛車都加了生物燃料,“生物燃料本身在歐洲是非常普遍和廣泛應用的一個方案,使用廢棄物比如地溝油所制作的生物燃料單位減排效率可以高達90%,也是最環保的生物燃料之一。”

傳統生物燃料使用普通油脂比如棕櫚油、菜籽油、大豆油等食用油脂來生產,但直接使用糧食做燃料,在國際上一直受到詬病,所以生物燃料的原料更傾向于使用餐廚廢油等廢棄物,這樣做既可以廢物利用,又能夠達到節能減排的效果。

然而歐洲的飲食相對清淡,想要在荷蘭本地或周邊收集大量的餐廚廢油比較困難。有兩三年的時間里,劉疏桐的工作便是做亞洲區的供應鏈、商務開發,其中一個重要部分便是在中國找地溝油,然后運到歐洲去。

在中國,地溝油不僅是餐廚廢油,更代表了一種對食品安全的威脅。地溝油本是對生活中各類劣質油的泛稱,大部分是剩飯剩菜所提取的餐廚廢油,小部分據稱取自下水道。在煉制過程中地溝油經過一系列化學變化,可能產生致癌物質。食用“地溝油”會導致腹瀉、腹痛,長期食用可能會引發癌癥,對人體的危害極大。

地溝油在中國發展出了一條需求相扣的“完美”地下產業鏈。每天晚上,油販子拉著潲水車去餐廳收購廢油,這些廢油經過黑工廠加工轉化為“食用油”,最終回到餐桌,有的甚至返回到出售潲水的餐廳。

據了解,這種“食用油”的“生產”成本一噸僅在300元人民幣左右,而利潤可以高達10倍。高利潤正是驅使這條地下產業鏈運轉不息的根本原因。

在為生物燃料收集原料的過程中,劉疏桐越發意識到地溝油問題在國內的嚴重性,“收集和轉化供應方面都出了問題。”

如果成熟的解決方案在歐洲可以完美執行,在中國何妨一試呢?把中國的地溝油全部做成生物燃料,運用到交通能源體系,既不用把它們運到歐洲,還可以幫助節能減排,最終還能解決其回流餐桌的問題,這不是個一舉多得的解決方案嗎?

2015年初,劉疏桐停下從國內往歐洲“倒”油的手,回到國內創業。

他想要做的這件事,涉及環保、新能源、食品健康等比較敏感的話題,“壁壘比較厚”,牽扯的利益相關方非常多。而且,想要打破地下地溝油產業這個鏈條,勢必要面臨多方面的阻礙及壓力。

一味地圍追堵截地溝油黑心工廠或者油販子,在劉疏桐看來并非最佳辦法,“光是政府的打壓,成本非常高,而且反彈很大,用可持續的商業模式從經濟利益角度來推動,才能徹底解決問題。”

他有自己的一套邏輯:不跟油販子搶油,跟他們合作。

“我們付他們差不多的錢,把地溝油全都送去做成正規的生物燃料,首先廢油不會再回流餐桌,此外運送過程需要物流參與,提升了物流供應鏈的可持續性,物流車還可以使用地溝油制生物燃料進而降低燃料成本。我們把大大小小的餐館和食用油的供應商也拉進來,因為普通民眾更注重食用油的安全性。”

如果他的想法得以實現,參與其中的每一方都能夠獲益:餐館將餐廚廢油賣出,降低了采購食用油的成本,同時廢油可以轉化成具有經濟價值、環保價值的生物燃料;生物柴油廠得到了原材料,又得到了銷售的渠道;大型的集團物流在不增加成本的情況下,保證了供應鏈的可持續性;幾百萬噸的地溝油被“消化”掉,食用油企業多出了大片市場……

“這就形成了一個有機的體系,既保證了廢油的安全處理,又保證了食用油的安全供應,我們暫且把這個體系叫做‘安全油聯盟’。”

劉疏桐認為,把食品安全、能源、交通、環保等原本看似不相干的行業、公司都整合在一起,并且讓每一方都獲益,當社會效益和環境效益轉化為經濟效益或經濟效益附加值的時候,就會有更多人一起促進社會的改變。

商業的理念已經成型,接下來重點放在哪里呢?

“提高終端產品價值。”劉疏桐解釋,“用地溝油做生物燃料,每單位溫室氣體會減排90%,包括二氧化硫等污染物的排放,都將大幅減少。”

雖然國內的轉化技術已經可以將地溝油制生物燃料安全用到汽車、飛機上,但是大眾對生物燃料的認識不夠,“生物燃料質量是否合格”一類的擔憂仍然存在。

劉疏桐從另一個方向去考慮這個問題。在他看來,正是因為大眾對生物燃料的認知不夠,不敢去使用它,導致它的價格非常低,利潤不足以支撐前端收油的成本,這也是地溝油流向地下產業鏈的一個原因。

道蘭環能的客戶名單中有一些“世界五百強”企業,這些企業對自己的供應鏈包括交通運輸,在環保方面都有一定的要求,如果能夠幫助它們減少污染排放,提升環境社會價值,品牌競爭力便會相應提升。“所以目前我從商業的角度,跟這些大的集團公司合作,為它們提供生物燃料,幫助它們做節能減排,這些大企業做好了以后,有一定的示范效應,就可以更大規模地在社會上進行推動。”

劉疏桐曾在Ted演講中說道,歐洲不只是注重產品的經濟價值,而且特別關注產品的環境和社會價值,他們有非常好的鼓勵機制把環境和社會價值都轉化為經濟價值,體現在產品上。“要知道,生物燃料在歐洲比普通柴油貴20%,為什么還有人去用?”

一方面是環保意識,一方面是歐盟的倡導,“歐盟對使用生物燃料是有一定硬性要求的。”目前,國內政府也正在做這件事,“但是它的落地非常差,” 劉疏桐說,“如果我們的方案被政府認可了,由政府進行引導,把地溝油交給我以及我的合作伙伴,就能確保地溝油被安全回收,做成生物燃料,用于比如市政交通或者商業物流中去。”

篇4

關鍵詞:水垢,危害,系統,保養

 

水垢是一種牢固附著在金屬表面上的沉積物,它對鍋爐的危害主要有以下幾點:①水垢能造成鍋爐受熱面損壞。水垢的導熱性能很差,1mm的水垢相當于20mm后的鋼板,在有水垢時,要達到無水垢相同的爐水溫度,受熱面管壁的溫度必然要提高,當溫度超過金屬所能承受的允許溫度時,就會引起鼓包和爆管事故。②鍋爐金屬表面覆蓋水垢時,破壞了正常的鍋爐水循環,容易引起爐管過熱,同時引起沉積物下的腐蝕。③浪費燃料,由于水垢的導熱性很差,燃料燃燒放出的熱量不能有效地傳給水,造成排煙溫度升高,降低了鍋爐的熱效率,1mm的水垢浪費燃料3%-10%,不利于節能和環保。論文大全。④降低了鍋爐的出力。⑤鍋爐結垢,須經常洗爐,既影響正常的生產,游耗費大量人力、物力、同時降低鍋爐使用壽命。水垢危害極大,但是熱水鍋爐的水垢與蒸汽鍋爐的水垢結生的機理不同,蒸汽鍋爐內的水垢是由于鍋爐內的水質不合格造成的,而熱水鍋爐結生的水垢一方面來源于鍋爐水,另一方面來源于管網系統的腐蝕。熱水鍋爐采暖系統的水主要存在于管網和用戶這個大的循環系統中,因此,對于熱水鍋爐,在保證給水合格的條件下,加強停爐期間鍋爐系統的保養,能夠有效防止熱水鍋爐的結垢。

熱水鍋爐內的沉積物主要是由水垢、淤泥、腐蝕產物、和生物沉積物構成。人們通常把淤泥、腐蝕產物、和生物沉積物三者稱為污垢,它們的來源主要是系統內的水循環到鍋爐內造成的。論文大全。

污垢一般是由顆粒細小的泥沙、塵土、不溶性鹽類的泥狀物、膠狀的氫氧化物、雜質碎屑、腐蝕產物、菌藻的尸體及粘性分泌物等組成。這些物質本質是不會形成硬垢的,但是,它們在水的循環過程中起到了CaCO3微結晶的晶核作用,這樣就加速了CaCO3析出結晶的過程。當存有這些物質的水流經鍋爐受熱面時,容易形成污垢沉積物,特別是流速慢的部分(如水冷壁管)污垢沉積物更多,這種沉積物體積較大,質地疏松稀軟,故稱軟垢。它們是引起垢下腐蝕的主要原因。當防腐措施不當時,鍋爐受熱面經常會有銹瘤附著,其外殼堅硬,內部疏松多孔,且分布不均。它們常與水垢、微生物、粘泥等一起沉積在受熱面上。這種銹瘤狀的腐蝕產物除了影響傳熱外,在水的循環過程中起到了CaCO3微結晶的晶核作用,加速了鍋爐水垢的生成。

熱水鍋爐的采暖系統主要是由金屬制造的,在非采暖期的大部分時間里,由于忽視保養或保養不當,整個系統一直在進行著以下幾種腐蝕:

?水中溶解氧和二氧化碳引起的腐蝕:鍋爐運行時,地下水中的溶解氧的濃度一般小于0.1mg/l,通過加熱,熱水系統中氧的濃度幾乎為零,氧對于鍋爐的腐蝕非常小。停爐后,由于采暖系統內缺水,整個系統內部處于潮濕的環境中,金屬表面附著一層水,水中O2和CO2的濃度迅速增大,金屬本身受到O2和CO2的腐蝕加快,鐵的腐蝕產物增加。

?腐蝕產物引起的腐蝕:鐵銹和氧氣一樣,可以作為腐蝕反應的去極化劑,其總的反應如下:

3微生物引起的腐蝕:由于微生物排出的黏液與無機物和泥沙雜物等形成沉積物附著在金屬表面,形成氧的濃差電池,促使金屬腐蝕。此外,在金屬表面和沉積物之間缺乏氧,因此,一些厭氧菌(主要是硫酸鹽還原菌)得以繁殖,當溫度為25―30oC時繁殖更快,它分解水中的硫酸鹽,產生H2S,引起碳鋼腐蝕:

鐵細菌是鋼鐵銹瘤產生的主要原因,它能使Fe2+氧化為Fe3+,釋放的能量供細菌生存需:

鐵細菌又稱沉積細菌,它能把水中的Fe2+轉化為不溶于水的Fe2O3的水合物,作為其代謝作用的一部分而在水中產生大量的氫氧化鐵。

鐵細菌還通過銹瘤建立氧的濃差電池,從而引起鋼鐵腐蝕。

產黏泥細菌是系統中數量最大的一類有害菌,它能產生一種膠狀的、黏性的或黏膠狀的、附著力很強的沉積物,這種沉積物很容易附著在金屬表面,并易引起垢下腐蝕。

藻類對采暖系統的危害也很大,藍藻適宜在32―40℃,pH值=6―8.9的環境中生長,在潤濕的條件下,繁殖特別快,藍藻死后形成污泥。硅藻喜歡生長在光線較暗,溫度較低的環境中,初春或者深秋大量繁殖,硅藻的細胞壁充滿聚合的白色二氧化硅,他的繁殖是產生硅污泥的原因。

在鍋爐運行時,這些腐蝕產物隨著水的循環進入到鍋爐內部,鍋爐水中鐵的化合物濃度和微生物產生的污泥濃度增加。鍋爐水中鐵的化合物的形態主要是膠態的氧化鐵,也有少量較大顆粒的氧化鐵和溶解狀態的氧化鐵,膠態氧化鐵帶正電荷,當鍋爐本體局部地區的熱負荷過高時,該部位的金屬表面與其他部分的金屬表面之間產生電位差。熱負荷很高的區域,金屬表面因電子集中而帶負電荷,這樣帶正電荷的氧化鐵微粒就向帶負電荷的金屬表面聚集,結果形成氧化鐵垢,由于氧化鐵垢的導熱性很差,致使鍋爐受熱面的熱負荷增大,產生的電位差增大,加快了氧化鐵垢的形成。當金屬氧化物達到一定的厚度時,由于爐膛的溫度不能及時傳遞給鍋爐水,結果就引起水冷壁管的爆破。微生物產生的污泥,一方面在鍋爐內部形成泥垢,另一方面,也起到晶核的作用,加速水垢的生成。論文大全。因此,在非采暖期,加強采暖系統的保養,防止這些腐蝕產物的形成,能夠有效防止熱水鍋爐結垢,對于鍋爐的安全運行非常重要。

參考文獻:⑴陳潔、楊東方編《鍋爐水處理技術問答》,北京,化學工業出版社出版發行,2003年印刷。⑵中華人民共和國國家質量監督檢驗檢疫總局頒布《鍋爐水處理檢驗規則》、《鍋爐水處理監督管理規則》,北京,新華出版社出版發行,2008年。⑶張兆杰、桑清蓮主編《鍋爐水處理技術》,鄭州,黃河水利出版社出版,2006年。 ⑷梁治齊主編《實用清洗技術手冊》,北京,化學工業出版社,2005年第二版。

篇5

技術功底雄厚

生物醇油性能優越

西安老科技教育工作者協會(簡稱西安老科協),成立于1983年是經西安市民政局核準登記的社團法人單位。其下屬的西安老科協專利技術開發中心主要從事專利申請、技術轉讓、技術交流、技術開發、新技術新產品的推廣與培訓。中心科研實力強大,信譽有保障,擁有西北最大國內一流的專利技術文獻、科技學術論文數據庫和完善的技術開發服務體系。

新型生物醇油是一種新型節能環保燃料,耗量低,熱量足,且無黑煙、無泄漏、無毒、無殘液、無積碳,無安全隱患,使用方便,成本僅為傳統燃料的1/3左右,讓接產客戶享有足夠的利潤空間。該燃料用途廣,尤其適合銷往飯店、學校食堂、工廠食堂、工業窯爐或鍋爐等場所,市場十分廣闊。生產生物醇油成本低廉,配制原料在各地化工廠、化肥廠和化工市場均可購置。新型生物醇油性能優越,熱值可高達8600到10000大卡/千克,與石油液化氣的熱值相當,可以替代傳統燃料,滿足廚房烹飪需求,節省飯店、食堂、家庭的開支。

生物醇油包括醇水型、醇烴型、醇醚型各類技術配方。車用甲醇汽油技術包括低甲醇含量,不需要改車的M15和高甲醇含量的M85,以及配套車用甲醇汽油雙燃料轉換器和最新研發的甲醇柴油等多種節能技術。該系列技術產品大大節省了車輛出行、運輸的費用。

新型灶具高效節能

令生物醇油如虎添翼

西安老科協專利技術開發中心不但技術力量雄厚,并且運用專業技術打造出一系列硬件設備。中心針對當前市面上傳統灶具的問題,研發出一系列節能、高效能的生物醇油灶具,包括家用灶、猛火灶、無風機家用商用灶及鍋爐、燃燒機等十幾種類型的產品,好車有好油才能跑得快,燃料好,灶具好,才能更節能!

當前,市場上普遍使用的都是傳統的醇油灶具,其原理是把醇油經油管送入灶芯,采用高壓風機把醇油分散霧化燃燒,這種燃燒方式,由于有一部分醇油被吹離灶芯,造成浪費,再加上強冷風氣流,降低了火焰溫度,消耗了部分能量,所以火力疲軟。要想提高溫度,只有增加油耗量。氣化灶則是把醇油先通過自身系統氣化為氣體,高溫氣體在高壓狀態下,經多個噴嘴噴射燃燒,沒有油損耗,沒有熱損耗,燃燒溫度更高,所以節能效果更顯著,可節約燃料30%到50%,且不用風機。西安老科協專利技術開發中心開發研制的生物醇油即時氣化技術可實現液體生物醇油持續、穩定、充分氣化后,氣態燃燒。使用該技術生產的大灶、小灶、民用灶具,均不用鼓風機,和鼓風機爐灶相比,同樣配方的生物醇油采用即時氣化技術燃燒,可節能50%以上。無風機,不用電,氣化燃燒更節能。

周到細致的指導方案

讓接產客戶運作無憂

一個好項目需要有成熟的運作方案來支持,嚴謹周密的后期運作指導不但能夠杜絕生產使用中的各種問題、隱患的出現,同時也會為接產客戶減少不必要的精力、財力、時間的浪費。西安老科協專利技術開發中心不但致力于能源技術的研發,更是結合了多年燃料市場的實戰經驗,總結出一系列規范化、標準化運作方案。生物醇油燃料技術要適應市場需求必須是系列化的,不是一兩個配方就能解決的,整個技術應該是全程化的,包括原料的選擇、質量判斷、配置過程中常見問題應如何處理、灶具的改造使用和維護、酒店油箱、油管的安裝,及經營銷售方式。沒有強大的技術實力做后盾,辛辛苦苦開發的市場就會變成別人的嫁衣,被別人所吞噬。

專業細致的技術服務打造行業的技術培訓服務規范。來人可免費參觀灶具樣品、燃燒效果,查看相關證件,也可以自己到市場購買原料,當場試驗,核算成本,實際考察客戶使用情況、滿意后再合作。西安老科協專利技術開發中心會實事求是的為客戶提供客觀公正的技術信息,并為客戶做好售后技術服務工作,長期一如既往的把技術升級改進工作落得實處,讓接產客戶運作無憂。

歡迎到西安老科協專利技術開發中心實地考察,背靠權威機構合作百分百放心!西安老科協衷心地提醒廣大讀者在進行項目投資前:多電話咨詢、多考察市場、多實地參觀,如有需要,西安老科協可免費贈送人工合成液化氣的詳細制作配方!

西安老科協專利技術開發中心

地址:西安市雁塔路南段99號(省科技大院)北四樓 西安火車站:5、30、41、500路到大雁塔站下車即到

電話:029-85525023 85538190

15891738148

免費咨詢電話:4000036980

篇6

關鍵詞 生物質能源;烤煙;烘烤;應用

中圖分類號 TK6 文獻標識碼 A 文章編號 1007-5739(2016)17-0153-03

Abstract To take advantage of the abundant biomass resources in our country adequately,relieving the status of rising costs and curing pollution,this paper reviewed the research progress of the biomass energy in tobacco curing. This study showed that applying biomass energy in tobacco curing benefits the promoting of tobacco quality,debasing the cost of flue-cured tobacco curing and reducing the pollution of curing. Currently the applied forms of biomass energy in tobacco curing included bio-coalbriquette,biomass gasification,biomass briquette and so on,different applied forms showed positive effect,which could be promoted in areas with suitable conditions.

Key words biomass energy;flue-cured tobacco;curing;application

烤煙烘烤是一個大量耗熱的過程,目前烤煙生產上推廣的密集烤房烘烤設備普遍采用燃煤供熱,熱利用率低,煤耗量高,通常1 kg干煙葉煤耗量1.5~2.5 kg標煤,而理論上的耗煤量為0.8 kg,也有研究分析指出,在密集烘烤中,火爐的熱效率為64.95%,烤房熱效率僅為36.08%,總的熱損失達63.92%,能量浪費驚人[1-3]。

愈演愈烈的世界范圍能源危機以及不斷上升的能源價格,使得生產烤煙的成本不斷增加,使烤煙生產的可持續發展受到嚴重影響。在此背景下研究烤煙烘烤節能技術,提高能源利用效率,尋找烤煙烘烤能源替代途徑,降低烤煙生產成本成為烤煙烘烤研究的一個重要課題。目前,此方面的研究主要集中在烘烤設備、烘烤工藝以及新型能源烘烤燃料開發等方面,其中新型能源烘烤燃料中的生物質能源因其本身可再生性、低CO2排放、幾乎不排放SO2、廣泛分布性、使用形式多樣、生物質燃料總量豐富等特點成為當下研究的一個熱點,有望成為烤煙烘烤傳統能源的有效替代品[4-5]。

1 生物質能源概述

生物質能源是植物通過光合作用將太陽能儲藏在有機物中的一種可再生能源。每年全球積累的生物質總量達1 730億t,蘊含的能量相當于目前全球總能耗的10~20倍[6]。據報道,生物質能已上升為僅次于化石能源煤、石油和天然氣之后的第4位能源,占世界一次能源消耗的14%[7]。與傳統直接燃燒方式相比,現代生物質能源的利用更多的是借助熱化學、生物化學等手段,通過一系列先進的轉換技術,生產出固、液、氣等高品位能源來代替化石燃料,為人類生產、生活提供電力、燃氣、熱能等終端能源產品[8]。在生態環境保護方面的研究發現,提供相同能量,煤的S和NOx排放量分別是秸稈的7.00倍和1.15倍,用1萬t秸稈替代煤炭能量,煙塵排放將減少100 t[9]。生物質能源作為一種可再生的低碳能源,具有巨大的發展潛力,它的開發利用對于建立可持續能源系統、促進國民經濟發展、保護生態環境具有重大意義。

2 生物質能源在烤煙烘烤上的應用研究

我國擁有居世界首位的生物質能源產量,年產農作物秸稈、谷殼等總量約14億t,如開發用于燃燒,可折合7億t標準煤[10]。以安徽省為例,每年農作物秸稈總產量5 000萬t左右,如果能開發利用其中的1/3轉化為燃料,即可消耗秸稈1 700萬t,約相當于建立2座年產500萬t的大型煤礦[11]。目前,烤煙烘烤上研究應用的生物質多為農作物秸稈,應用方式主要有生物質型煤、生物質氣化、生物質壓塊等,應用效果較為理想。

2.1 應用方式

2.1.1 生物質型煤。生物質型煤是指在破碎成一定粒度的煤中加入一定比例的秸稈等可燃生物質和添加劑后由高壓成型機壓制成型的潔凈能源產品。其充分利用煤和生物質各自的優勢,具有節煤和生物質代煤的雙重作用,與原煤燃燒相比,生物質型煤是提高燃燒效率和減少污染的有效方法之一,目前已進入商業化生產階段[12]。

孫劍鋒等[13]利用煤和廢棄的植物莖桿生產出與烘烤設備外形、尺寸大小相配套的生物質型煤。其在使用過程中容易實現配風的精準控制,進而實現與密集烤房控制系統的配套,且生物質型煤在燃燒過程中著火大小容易控制,生火及升降溫速率均較快,能更好地滿足烤煙烘烤工藝的需求。向金友等[14]研究秸稈與煤不同配方壓塊燃料在烤煙烘烤中的應用,結果發現80%秸稈+20%煤混合壓塊代煤烤煙完全可行。

2.1.2 秸稈煤。秸稈煤是一種新型蜂窩煤燃料,沒有煤的加入,以青蒿、煙、玉米等農作物秸稈以及廢棄的樹木枯枝、雜草、鋸末、稻殼等生物秸稈為原料,不需粉碎,在厭氧條件下碳化6~8 h,利用秸稈自然進行分解形成生物質碳,再加入黏土和其他粘合劑混合后形成。

郭保銀[15]研究發現各種秸稈碳化率平均約為50%,而通過加配方后,常規秸稈等材料2 t可生產2 t秸稈煤,其秸稈煤代替煤炭烤煙的技術研究結果表明秸稈煤易點火、燃燒效果好、升溫快而且無黑煙和異味,滿足烤煙工藝要求,其代替煤炭及其制品在密集烤房中應用是可行的,可以進行大范圍示范。

2.1.3 生物質氣化。生物質氣化是采用生物質氣化發生裝置將生物質原料在厭氧狀態下燃燒轉化為由氫氣、一氧化碳、甲烷等組成的可燃氣體。生物質氣化方式在烤煙烘烤中的應用相對較多,生物質氣化烤煙系統開發設計相對成熟。楊世關等[16]研究設計了一套新型烤煙設備,主要是以生物質燃氣為能源,將間接換熱與直接換熱緊密結合,該系統的能源利用率及煙葉品質都較傳統間接換熱式烤房有顯著提高。飛 鴻等[17]以廢棄煙桿、煙梗以及各類農作物秸稈為原料采用生物質氣化發生裝置通過燃氣發生爐進行厭氧燃燒使其熱解出可燃氣體,經管網送往各烤房實現自動控制烘烤煙葉。

2.1.4 生物質壓塊。在壓強為50~200 Mpa、溫度為150~300 ℃、或不加熱或不加黏結劑的條件下,先將木材加工剩余物及各種農作物秸稈等粉碎成一定粒度,再壓縮成塊狀、棒狀、粒狀等具有一定密實度的成型物[18],故又稱為生物質固體成型燃料。目前,此燃料在烤煙烘烤中的應用研究較為廣泛。

張聰輝等[19]研究不同清潔能源對烤后煙的化學成分、質量感官以及經濟效益的影響,其中生物質燃料為2012年煙桿壓塊能有效降低烘烤成本,提高烘烤效益,替代煤炭為主要烘烤燃料有較大的潛力。王漢文等[20]用稻殼和玉米秸稈壓塊成燃料進行試驗,將其放在AH密集烤房進行燃燒,能降低烤煙生產成本、滿足烘烤的工藝要求、改善煙葉內在品質。王文杰等[10]以花生殼為原料加工的生物質壓塊為供試燃料,研發了配套的生物質壓塊燃燒爐,研究生物質能源在烤煙烘烤中的應用效果,生物質壓塊及燃燒爐不僅能替代以煤炭為燃料的普通立式爐用于煙葉烘烤,而且能夠顯著降低煙葉烘烤成本、提高煙葉烘烤質量。倪克平等[21]研究生物質壓塊燃料在煙葉烘烤中的應用效果,其中生物質壓塊燃料是以木材加工的鋸末為主原料,添加輔助化工原料后,用攪拌機攪拌成均勻的混合原料,將混合原料通過壓塊成型機壓制成直徑為2 cm的圓餅,配備自動添加燃料的整套專用燃燒爐,研究結果表明:生物質壓塊用于煙葉烘烤可以充分調控烤煙烘烤工藝,降低烘烤成本,節能減耗,提高烤后煙葉品質。譚方利等[22]關于生物質壓塊燃料以及煤炭燃料在烤煙烘烤中的應用效果對比研究表明生物質壓塊用于烤煙烘烤是可行的,但對于燃料添加技術要求較高。

2.2 應用效果

生物質能源在烤煙烘烤中的不同應用形式對烘烤效果的影響均較好,節能減排的同時有利于提高烤后煙葉的質量。與原煤相比使用生物質型煤烘烤煙葉,生產1 kg干煙可節約用煤約0.15 kg,每爐煙葉可節約用煤50 kg以上,節能效果顯著,而且生物質型煤中煤矸石含量為零[13]。使用秸稈煤烤煙對烤后煙葉內在化學成分無不良影響,而且能夠降低上部葉煙堿含量,提高上部煙葉還原糖含量,氮堿比更加協調,香氣量充足,香氣質好,余味明顯改善,雜氣減輕,刺激性減少,評吸結果較好,有利于提高煙葉內在品質[15]。飛 鴻等[17]的研究中生物質氣化烘烤與傳統的燃煤烘烤相比,煙葉的內在品質得到一定的改善。感官評吸結果表現為生物質氣化烘烤的煙葉其雜氣、香氣質、干凈度均優于煤炭燃料烘烤的煙葉,而且回味、勁頭、濕潤上也表現出一定的優勢。采用秸稈壓塊燃料烘烤,能降低煙葉中含氮化合物含量,提高煙葉中總糖、還原糖,有利于改善煙葉化學成分的協調性[20]。譚方利等[22]的研究中生物質壓塊燃料與煤炭相比烤后煙葉上等煙比例提高了2.3個百分點,青黃煙、微帶青煙、雜色煙比例分別下降了0.99、0.81、1.53 個百分點。

2.3 應用成本

由于烤煙烘烤中應用的生物質原料主要是廢棄的秸稈,來源廣泛、價格低廉,因此利用生物質能源燃料降低烤煙烘烤成本效果顯著。生物質型煤的應用加上固硫劑、粘合劑以及加工成本,比同等發熱量的原煤成本低100元/t左右[13]。秸稈煤在酉陽縣烤煙烘烤上的應用,按當地生產水平以及市場煤炭價格計算,烘烤煙葉1 875 kg/hm2,使用秸稈煤烤煙可降低成本約750元/hm2,以此測算,若在該縣進行推廣應用,每年可節約煤炭1.8萬t,全縣煙農增收480萬元[15]。飛 鴻等[17]利用生物質烘烤煙葉的研究中采用的生物質氣化發生裝置上料系統、流量控制系統、除渣系統均為自動化系統,烤房數量增加到100炕也只需要2人控制,自動化程度高,在大規模烘烤中將大大降低勞動成本。生物秸稈壓塊在烤煙烘烤中的應用成本以安徽省為例,生產干煙葉2 062.5 kg/hm2(1 875~2 250 kg/hm2),需煤炭275 kg(以500元/t計),計2 062.5元/hm2;需秸稈壓塊206.25 kg(以400元/t計),計1 237.5元/hm2,降低成本825元/hm2[20]。譚方利等[22]的研究中應用生物質壓塊燃料與煤炭燃料相比1 kg干煙成本降低0.1元。

3 結語

烤煙烘烤大量耗熱且熱能利用率低,傳統燃料煤炭在烤煙烘烤中的應用帶來環境污染的同時,由于燃料資源的緊缺烘烤成本不斷增加。把我國豐富的生物質能源應用在烤煙烘烤中既能充分利用資源同時也有望解決烤煙烘烤面臨的問題。

生物質能源在烤煙烘烤中的應用研究表明其可以代替煤炭燃料,而且具有清潔、能提高烤煙品質、降低烘烤成本的優點。生物質能源在烤煙烘烤中的不同應用形式中生物質型煤的原料中只是減少了煤的用量加入部分生物質,秸稈煤加工過程中的厭氧條件碳化工藝相對復雜,而生物質氣化裝置包括氣化爐、儲氣罐等,與烤房配合烘烤專用設備復雜,建成后更適合大規模烘烤。其中生物質壓塊研究相對較多,工藝較成熟簡便。生物質壓塊加工生產線及配套設備的開發研究中早在2010年姚宗路等[23]針對生物質壓塊過程中存在的系統配合協調能力差以及生產率低等問題研發設計了有強制喂料系統的成型機以及配套設備,可實現自動化大規模的生物質壓塊生產。生物質壓塊方式制成的生物質原料可以直接應用于烤煙烘烤,基本上不需要對烤房、烤爐等進行改造,應用方便。生物質能源的利用形式中生物質發電是我國目前對生物質能源應用最為廣泛和普通的方式,但其在烤煙烘烤中的應用研究相對較少,是以后生物質能源在烤煙烘烤中的應用研究的一個方向[24-25]。當下的研究表明,烤煙烘烤中的傳統燃料煤炭可以用生物質壓塊代替,應用效果較好且成本低,可以在烤煙生產上進行示范推廣。

4 參考文獻

[1] 宋朝鵬,孫福山,許自成,等.我國專業化烘烤的現狀與發展方向[J].中國煙草科學,2009,30(6):73-77.

[2] 王建安,劉國順.生物質燃燒鍋爐熱水集中供熱烤煙設備的研制及效果分析[J].中國煙草學報,2012,18(6):32-37.

[3] 汪廷錄,楊清友,張正選.介紹一種一爐雙機雙炕式密集烤房[J].中國煙草,1982(1):37-39.

[4] SAXENA RC,ADHIKARI DK,GOYAL HB.Biomass-based energy fuel through biochemical routes:A review[J].Renewable and Sustain-able Energy Review,2009(3):13.

[5] 胡理樂,李亮,李俊生.生物質能源的特點及其環境效應[J].能源與環境,2012(1):47-49.

[6] 蔡正達,王文紅,甄恩明,等.戰略性新興產業的培育和發展:首屆云南省科協學術年會論文集[C]//云南省科學技術協會,2011.

[7] 中華人民共和國國家發展計劃委員會基礎產業發展司.中國新能源與可再生能源1999白皮書[M].北京:中國計劃出版社,2000.

[8] 吳創之,周肇秋,陰秀麗,等.我國生物質能源發展現狀與思考[J].農業機械學報,2009,40(1):91-99.

[9] 宋朝鵬,李常軍,楊超,等.生物質能在煙葉烘烤中的應用前景[J].河北農業科學,2008,12(12):58-60.

[10] 王文杰,李峰,岳秀江,等.生物質壓塊及燃燒爐在煙葉烘烤中的應用效果研究[J].現代農業科技,2013(11):11.

[11] 李泉臨,秦大東.秸桿固化成型燃料開發利用初探[J].農業工程技術(新能源產業),2008(4):27-30.

[12] 趙嘉博,劉小軍.潔凈煤技術的研究現狀及進展[J].露天采礦技術,2011(1):66-69.

[13] 孫建鋒,楊榮生,吳中華,等.生物質型煤及其在煙葉烘烤中的應用[J].中國煙草科學,2010,31(3):63-66.

[14] 向金友,楊懿德,謝良文,等.秸稈與煤不同配方壓塊燃料在烤煙中的應用研究[J].中國農學通報,2011,27(8):340-344.

[15] 郭保銀.重慶市酉陽縣秸稈煤替代煤炭烤煙技術研究[J].安徽農業科學,2013,41(1):322-323.

[16] 楊世關,張百良,楊群發,等.生物質氣化烤煙系統設計及節能與品質改善效果分析[J].農業工程學報,2003,19(2):207-209.

[17] 飛鴻,蔡正達,胡堅,等.利用生物質烘烤煙葉的研究[J].當代化工,2011,40(6):565-567.

[18] 劉石彩,蔣劍春.生物質能源轉化技術與應用(Ⅱ)[J].生物質化學工程,2007,41(4):59-63.

[19] 張聰輝,趙宇,蘇家恩,等.清潔能源部分替代煤炭在密集烤房中應用技術研究[J].安徽農業科學,2015,43(4):304-305.

[20] 王漢文,郭文生,王家俊,等.“秸稈壓塊”燃料在煙葉烘烤上的應用研究[J].中國煙草學報,2006,12(2):43-46.

[21] 倪克平,甄煥菊.生物質壓塊燃料在煙葉烘烤中的應用效果[J].農業開發與裝備,2015(11):63.

[22] 譚方利,樊士軍,董艷輝,等.生物質壓塊燃料及煤炭燃料在煙葉烘烤中的應用效果對比研究[J].現代農業科技,2014(10):201.

[23] 姚宗路,田宜水,孟海波,等.生物質固體成型燃料加工生產線及配套設備[J].農業工程學報,2010,26(9):280-285.

篇7

查看更多《燃料化學學報》雜志社信息請點擊: 《燃料化學學報》編輯部

研究論文

(257)co2對褐煤熱解行為的影響 高松平 趙建濤 王志青 王建飛 房倚天 黃戒介

(265)煤催化氣化過程中鉀的遷移及其對氣化反應特性的影響 陳凡敏 王興軍 王西明 周志杰

(271)應用tg-ftir技術研究黃土廟煤催化熱解特性 李爽 陳靜升 馮秀燕 楊斌 馬曉迅

(277)三維有序大孔fe2o3為載氧體的生物質熱解氣化實驗研究 趙坤 何方 黃振 魏國強 李海濱 趙增立

(284)首屆能源轉化化學與技術研討會第一輪通知 無

(285)o-乙酰基-吡喃木糖熱解反應機理的理論研究 黃金保 劉朝 童紅 李偉民 伍丹

(294)基于流化床熱解的中藥渣兩段氣化基礎研究 汪印 劉殊遠 任明威 許光文

(302)超臨界水中鉀對甲醛降解過程影響的研究 趙亮 張軍 鐘輝 丁啟忠 陳孝武 徐成威 任宗黨

(309)反應溫度對加氫殘渣油四組分含量和結構的影響 孫昱東 楊朝合 谷志杰 韓忠祥

(314)高溫沉淀鐵基催化劑上費托合成含氧化合物生成機理的研究 毛菀鈺 孫啟文 應衛勇 房鼎業

(323)pd修飾對cdo.8zn0.2s/sio2光催化甘油水溶液制氫性能的影響 徐瑾 王希濤 樊燦燦 喬婧

(328)熱等離子體與催化劑協同重整ch4-co2 魏強 徐艷 張曉晴 趙川川 戴曉雁 印永祥

(334)《燃料化學學報》征稿簡則 無

(335)磷化鎳催化劑的制備機理及其加氫脫氮性能 劉理華 劉書群 柴永明 劉晨光

(341)改性y型分子篩對fcc汽油脫硫性能的研究 董世偉 秦玉才 阮艷軍 王源 于文廣 張磊 范躍超 宋麗娟

(347)燃料特性對車用柴油機有害排放的影響 譚丕強 趙堅勇 胡志遠 樓狄明 杜愛民

(356)o2/co2氣氛下o2濃度對燃煤pm2.5形成的影響 屈成銳 徐斌 吳健 劉建新 王學濤

(361)鐵鈰復合氧化物催化劑scr脫硝的改性研究 熊志波 路春美

(367)如何寫好中英文摘要 無

(368)so2對鈣基co2吸收劑循環煅燒/碳酸化反應的影響 吳昊 王萌 劉浩 楊宏昊

篇8

 查看更多《燃料化學學報》雜志社信息請點擊: 《燃料化學學報》編輯部     

        研究論文

        (257)co2對褐煤熱解行為的影響 高松平 趙建濤 王志青 王建飛 房倚天 黃戒介

        (265)煤催化氣化過程中鉀的遷移及其對氣化反應特性的影響 陳凡敏 王興軍 王西明 周志杰

        (271)應用tg-ftir技術研究黃土廟煤催化熱解特性 李爽 陳靜升 馮秀燕 楊斌 馬曉迅

        (277)三維有序大孔fe2o3為載氧體的生物質熱解氣化實驗研究 趙坤 何方 黃振 魏國強 李海濱 趙增立

        (284)首屆能源轉化化學與技術研討會第一輪通知 無

        (285)o-乙酰基-吡喃木糖熱解反應機理的理論研究 黃金保 劉朝 童紅 李偉民 伍丹

        (294)基于流化床熱解的中藥渣兩段氣化基礎研究 汪印 劉殊遠 任明威 許光文

        (302)超臨界水中鉀對甲醛降解過程影響的研究 趙亮 張軍 鐘輝 丁啟忠 陳孝武 徐成威 任宗黨

        (309)反應溫度對加氫殘渣油四組分含量和結構的影響 孫昱東 楊朝合 谷志杰 韓忠祥

        (314)高溫沉淀鐵基催化劑上費托合成含氧化合物生成機理的研究 毛菀鈺 孫啟文 應衛勇 房鼎業

        (323)pd修飾對cdo.8zn0.2s/sio2光催化甘油水溶液制氫性能的影響 徐瑾 王希濤 樊燦燦 喬婧

        (328)熱等離子體與催化劑協同重整ch4-co2 魏強 徐艷 張曉晴 趙川川 戴曉雁 印永祥

        (334)《燃料化學學報》征稿簡則 無

        (335)磷化鎳催化劑的制備機理及其加氫脫氮性能 劉理華 劉書群 柴永明 劉晨光

        (341)改性y型分子篩對fcc汽油脫硫性能的研究 董世偉 秦玉才 阮艷軍 王源 于文廣 張磊 范躍超 宋麗娟

        (347)燃料特性對車用柴油機有害排放的影響 譚丕強 趙堅勇 胡志遠 樓狄明 杜愛民

        (356)o2/co2氣氛下o2濃度對燃煤pm2.5形成的影響 屈成銳 徐斌 吳健 劉建新 王學濤

        (361)鐵鈰復合氧化物催化劑scr脫硝的改性研究 熊志波 路春美

        (367)如何寫好中英文摘要 無

        (368)so2對鈣基co2吸收劑循環煅燒/碳酸化反應的影響 吳昊 王萌 劉浩 楊宏昊

推薦期刊
欧美午夜精品一区二区三区,欧美激情精品久久久久久,亚洲av片不卡无码久东京搔,亚洲鲁丝片AV无码APP
久久人人爽爽人人爽人人片AV | 中文字幕在线精品乱码高清视频 | 亚洲精品成AV人在线观看片 | 亚洲乱码国产乱码精品精 | 一区二区不卡不卡高清在线 | 在线中文字幕亚洲日韩2020 |