歡迎訪問愛發表,線上期刊服務咨詢

人工智能技術論文8篇

時間:2023-03-07 15:04:29

緒論:在尋找寫作靈感嗎?愛發表網為您精選了8篇人工智能技術論文,愿這些內容能夠啟迪您的思維,激發您的創作熱情,歡迎您的閱讀與分享!

人工智能技術論文

篇1

以上論證說明:人工智能技術可以在人類隱性智慧定義的工作框架內模擬人類顯性智慧(人類智能)生成知識,創建主客雙贏的策略解決各種復雜問題。而這是現今其他各類技術做不到的。不過,由于在人工智能系統工作的基本過程中,(1)中客觀存在各種不確定性,人類給定的知識未必能夠理想地體現客觀規律,也未必能夠完全滿足求解問題的需要,(2)中人類預設的求解目標也不見得完全合理,(3)中人工智能系統各個環節必然存在各種不理想性。因此,人工智能系統對人類顯性智慧能力的模擬不可能完全到位,人工智能系統提供的問題解答也有可能不如人類自己求出的解答。換言之,人工智能系統所模擬的人類顯性智慧能力,原則上不可能超過人類自己的顯性智慧能力。如果說人工智能系統確實也有超人的地方,那主要是它的工作速度、工作精度、持久能力等因素,而不可能是顯性智慧中的智慧品質。至于一些人所宣傳的機器超越人類甚至機器淘汰人類的說法,是沒有根據的。無論是人工智能系統,還是其他各種機器系統,它們共同的問題之一是:機器沒有生命,沒有目的,不可能自主發現應當解決的實際問題,不可能自主形成機器的智慧,尤其不可能無中生有地形成超越人類和淘汰人類的荒唐愿望,因此更不可能產生淘汰人類或滅絕人類的行為。

2人工智能與信息技術的關系

圖2的人工智能系統模型表明,完整的人工智能技術系統必須具有如下環節:信息獲取(感知)、信息傳遞(通信)、信息處理(計算)、知識生成(認知)、策略創建(決策)、策略執行(控制)以及反饋學習優化等基本技術系統,這正像“人”這個智能系統必須具有感覺器官(信息獲取)、傳輸神經系統(信息傳遞)、思維器官(信息處理、知識生成、策略創建)以及執行器官(策略執行)。 其中傳感(感受信息)、通信(傳遞信息)、計算(處理信息)、控制(執行信息)等技術屬于信息技術??梢?,人工智能系統是一個全局整體,其中包含著傳感、通信、計算、控制等信息技術環節;這正像人這個智能系統是一個全局整體,其中包含感覺器官、傳輸神經、丘腦和執行器官這些信息器官。如果把人工智能系統稱為完整的人工智能系統,而把其中的知識生成和策略創建稱為核心人工智能系統,那么,則有:完整的人工智能系統=核心人工智能系統+信息技術系統其中,核心人工智能系統處于完整人工智能系統的核心,處理知識和智能層次的問題;信息技術系統處于完整人工智能系統的外周,處理信息層次的問題,同時擔任核心系統與外部環境之間的兩端接口:一端是從環境獲取本體論信息(傳感),另一端是對環境施加智能行為(控制)。這就表明,信息技術系統提供給人類的服務主要是方便快捷的信息共享,而不可能提供如何認識事物本質的服務(因為這需要知識),更不可能提供如何解決問題的服務(因為這需要智能策略)[2]。

3“新型”信息技術

近十多年來,先后出現了大數據、云計算、物聯網、移動互聯網以及各種互聯網的應用技術。人們把它們稱為“新型”信息技術或“新一代”信息技術。深入分析可以發現,這些新型信息技術的核心技術正是核心人工智能系統的知識生成和策略創建技術。不妨以大數據技術為例加以說明。圖3表示了大數據技術系統的工作流程。由于有著多種來源、多種背景以及多種格式,大數據通常是病態結構或不良結構的大規模數據集合,其中可能包含垃圾、病毒和黑客攻擊程序。因此,如圖3所示,大數據技術的第一個環節就是智能分類:把無用的數據識別分類出來加以過濾和抑制,把有用的數據按照某些特征進行分類,再分門別類地送到恰當的云計算(和云存儲)系統,進行相應的信息處理,為知識生成(知識挖掘)做好必要的準備。通過知識挖掘生成了足夠的知識之后,才可以把這些知識(結合求解目標)轉換成為用來解決問題的智能策略。其中,智能分類、知識挖掘和策略創建都是人工智能的基本技術??梢?,如果沒有這些人工智能技術,大數據就只能是數據,而不可能轉換成為有用的知識和可以用來解決問題的智能策略。

由此可知,大數據技術的核心就是人工智能技術,可以把它比較確切地稱為面向大數據的智能技術。而把它稱為新型信息技術則沒有真正抓住大數據技術的要害和本質,模糊了人們對大數據技術和人工智能技術的認識,不利于大數據技術的研究和發展,也不利于人工智能的研究和應用。真正的智能物聯網模型不是別的,正是圖2所示的模型。如圖2所示,只要在綜合知識庫內設置“對物控制的目標”,那么“外部世界的物”的信息就經由傳感器獲得,經過通信系統傳送到計算系統并在這里進行必要的處理即把信息變成適用的信息,接著由認知系統轉換成為知識,然后由決策系統根據控制目標把信息和知識轉換成為智能策略,智能策略再經通信系統傳到執行系統之后轉換成為智能行為反作用于所關注的“物”,使它的狀態符合預設的目標。近來人們在密切關注著“互聯網+”。其實,“互聯網+”可以有兩種不同的理解。一種理解是當前人們所關注的互聯網推廣,這里的“+”就相當于信息化的“化”,就是互聯網的各種應用。另一種更有意義的理解則把“互聯網+”理解為互聯網升級,就是把以計算機為終端的現有互聯網升級為以人工智能系統為終端的智能互聯網。這就是2015年全國兩會期間全國政協委員的“中國大腦”提案。應當認為,互聯網推廣,即把互聯網應用到各行各業是完全必要的,這是信息化建設的正常要求。但是,從信息化建設的發展大勢來看,互聯網升級即把當前常規互聯網升級為智能互聯網則更為必要,這將為中國信息化建設注入更為強大的新活力,是轉變經濟發展方式的需要,是國民經濟產業升級的需要。綜上所述,大數據技術、云計算技術、智能物聯網技術,其實都是人工智能技術的相關具體應用??梢赃@么說,如果沒有人工智能技術,單憑信息技術很難有效地應對大數據和物聯網以及未來更多更復雜的技術挑戰。

4結束語

篇2

人工智能是一門綜合了生理學、語言學、計算機科學等的學科,具有綜合性、挑戰性等特點,其主要目的便是賦予機器人工智能的功能,使其能夠替代人去完成一些危險性與復雜性較高的工作,進而確保人們的安全,促進工作效率的提高[1]。因此,人工智能也被稱為機器智能。相比于自然智能與人類智能而言,人工智能屬于一項全新智能,其通過將設備、系統等來模擬人類各項智能活動,從而完成命令。作為一項結合多門學科的應用技術,人工智能的發展與其組建學科的關系十分緊密,特別是計算機技術的發展方向,其對人工智能的應用具有決定性作用。此外,人工智能技術也極大程度上促進了計算機網絡技術的發展,計算機為從單純數據計算轉變為知識處理,就離不開人工智能技術的支持。人工智能的作用與優勢具體如下:其一,可處理不確定信息,實時了解系統資源表現出來的局部及全局狀態,并對狀態變化情況進行追蹤,通過技術處理獲取的信息,從而為用戶實時提供所需信息護具。其二,具有較高的寫作能力,可科學、有效整合獲得的資源,進而將各用戶之間的資源進行傳輸與共享,通過有機結合網絡管理與眾多寫作分布式人工智能的思想,可充分促進網絡管理相關工作效率及效益的提高。其三,其在網絡智能化護理中具有顯著優勢,主要表現在其學習、推理能力方面。在網絡管理工作中應用人工智能,可將信息處理的準確性及效率進行提升,同時,通過利用人工智能技術的記憶功能,可在存儲信息過程中建立完善的信息庫,并將其作為綜合、解釋、總結信息的平臺,在產生出更為準確及科學的高級信息的基礎上,實現網絡管理水平的全面提升。

2計算機網絡技術的問題

目前,隨著計算機技術的廣泛應用,人們愈發重視有關網絡信息安全問題。在網絡管理系統的應用過程中,用戶最為關注的功能便是網絡監視與網絡控制,其中,為正常發揮網絡監視及網絡控制這兩大功能,就需要對信息急性及時獲取與準確處理。網絡傳輸的數據通常是不連續、不規則的,而在早期階段,計算機只具備邏輯化分析及處理數據的功能,難以準確判斷出數據的真實性,因此,為從大量繁復的信息中,挑選出有效的信息,實現計算機網絡技術的智能化具有非常重要的意義[2]。計算機的應用日益廣泛與深入,這使得用戶需要通過網絡安全管理來為其信息安全提供保障,而網絡犯罪現象的增多,使得計算機必須具備靈敏的觀察能力及迅速的反應能力否則便難以對侵犯用戶信息的各種違法犯罪行為進行有效遏制。為促進網絡安全管理的實現,就需要將以人工智能技術為基礎而建立起來的智能化管理系統作為有效手段,自動收集信息數據,及時診斷運行故障,并在線分析趨勢及性能等,從而確保計算機發生網絡故障時,可做出快速、準確的反應,并采取有效措施來恢復計算機的網絡系統。由此可知,針對計算機網絡中存在的問題,就需要應用人工智能技術,在其內部建立完善的網絡管理及防御系統,從而為用戶信息安全提供充分保障。

3計算機網絡技術中人工智能的應用分析

在計算機網絡技術中應用人工智能,可極大程度滿足人們對計算機提供人性化及智能化服務的需求。其中,計算機網絡技術智能化服務主要指的是智能化的人機界面、信息服務、系統開發及支撐的環境這幾個方面,與此同時,這些需求進一步促進了人工智能在計算機網絡技術,尤其是在智能人機界面、網絡安全及系統管理評價等方面的應用進程。

3.1人工智能在計算機網絡安全管理中的應用。在計算機網絡技術中,人工智能得到了極為廣泛的應用。在計算機網絡安全管理中,人工智能的應用主要表現在智能防火墻、入侵檢測、智能型反垃圾郵件系統這三個方面。相比于其他防御系統,智能防火墻系統采用的是智能化識別技術,例如,通過概率、統計、記憶、決策等方法,來識別并處理有關信息數據,不但有效減少了計算機匹配檢查過程中的龐大計算,而且大大提高了發現網絡有害行為的效率,從而實現了限制訪問及攔截有害信息的功能;此外,與傳統防御軟件相比,智能防火墻系統具有更高的安檢效率,從而將拒絕服務共計這一普通防御軟件普遍發生的問題進行有效解決,實現了高級應用的入侵及病毒傳播的有效遏制[3]。作為計算機網絡技術安全管理的一項重要環節,入侵檢測起著保證網絡安全的關鍵作用,同時也是防火墻技術的核心部分。計算機系統資源的保密性、完整性、安全性等均與網絡系統入侵檢測功能的有效發揮有著緊密聯系。入侵檢測技術通過采集、篩選、分類、處理信息數據,在形成最終報告的基礎上,將當前計算機網絡系統的安全狀態及時反映給用戶。現階段,人工智能在模糊識別、專家及人工神經網絡等系統入侵檢測中,得到了非常廣泛的應用。計算機網絡安全管理中的智能型反垃圾郵件系統,是一項以人工智能技術為基礎而研發出來的防護技術,其針對的對象為垃圾郵件。此項技術可在不對用戶信息安全造成影響的前提下,有效監測用戶的郵件,并在完成郵箱內垃圾郵件的開啟式掃面后,將垃圾郵件分類信息提供給用戶,提醒其對可能對自身不利或對系統造成危害的信息進行盡早處理,進而確保整個郵箱的安全性,

3.2人工智能在計算機網絡系統管理及評價中的應用。計算機網絡管理的智能化發展,離不開人工智能技術及電信技術的發展。除了應用在計算機網絡安全管理中,人工智能技術中的問題求解技術及專家知識庫等,均可促進計算機網絡綜合管理的實現。由于網絡具有瞬變性及動態性的特點,因而給計算機網絡管理工作增加了一定的難度,這同時也使得現代化網絡管理工作朝著智能化的方向發展。其中,以人工智能理論為發展基礎的專家級決策及支持方法,在信息系統的管理工作中得到了廣泛應用。作為一項智能計算機程序,專家系統可累積盡可能多的專家經驗與知識,并通過進行歸納與總結,在形成資源錄入系統的基礎上,利用這一匯集了多位特定領域中的專家經驗的系統,對此領域中相似的其他問題進行解決。因此,對于計算機網絡管理及其系統評價,可通過眾多專家系統來開展計算機網絡管理及系統評價等大量工作。

4結數語

篇3

關鍵詞:人工智能 科學技術 倫理問題

一.人工智能的背景

人工智能是計算機科學的分支,它企圖了解智能的實質,并研制出一種新型的以人類思維相似的方式做出相應反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統等。

人工智能的思想萌芽最早可以追溯到十七世紀的巴斯卡和萊布尼茨。十九世紀,英國數學家布爾和摩爾根提出了“思維定律”,這些可謂是人工智能的開端。(1)50年代至70年代,人工智能相繼出現了一批顯著的成果,這一階段的特點是重視問題求解的方法,忽視知識重要性。(2)隨著第五代計算機的研制進入了80年代,人工智能得到迅猛發展。它的研制形成了一股研究人工智能的熱潮。(3)90年代,由于國際互連網的技術發展,將人工智能更面向實用。研究人工智能出現新的。

二.人工智能的發展給人類帶來倫理問題

(1)人工智能的情感問題。情感問題是千百年來人們一直在談論的話題。明斯基認為,通過把我們的身體部分看做是大腦可以使用的資源,就可以改變它們的精神狀態。因此,現在人工智能界的一種觀點認為情感是一種特別的思維方式,我們可以利用它來增加我們的機智。智能機器人畢竟是一個賦予一種人類情感程序的機器,實質上還是沒有人類的意識,只有固定的程序。

(2)人工智能機器的責任問題。人類不斷向前發展,社會不斷進步,人類把人工智能機器研制出來,賦予一定的程序,幫助老人,照顧小孩等;愛,不僅是男女之間的愛,也有父母對子女,這種愛是相互的。人們要面對智能機器的情感控制,我們不能把它視為一臺機器,應該視為人類其中的一員,他們是一個種族,我們要對研制出來的人工智能機器負責。智能機器賦予人類的情感,我們也要給予同等的情感。我們不僅要研制智能機器,我們也要愛護和保護他們。

三.人工智能的問題對策

(1)人工智能情感問題研究。我們可以看出人工智能的機器情感是一個極其復雜的問題,這不僅涉及到人工智能的技術層面,同時情感是一種特殊的思維方式,機器是同樣可以具有情感的。人類可能賦予人工智能一定的情感程序,我們要把人工智能的看成一類種族,讓人工智能與我們共同創建美好的大家庭。

(2)人工智能的責任問題研究。隨著人類社會的不斷發展和進步,人工智能技術研究將成為人類不可避免,人類研究人工智能不僅會給人類帶來幫助,也會給人們的帶來一些困惑。我們在研究人工智能機器要考慮到,智能機器發展到一定程度的時,智能機器可以自己轉變程序,人類要研究一種機器人的法律規范,也要賦予研究機器人的科學家一定的法律法規。

四.人工智能的影響

(1)人工智能帶來負面影響。隨著現代科學技術的發展,人工智能給人類帶來幫助,也給人們帶來了一些問題,像氣候變暖,生物物種的滅絕,新型細菌的出現等。

(2)研究人工智能涉及的學科領域。人工智能是研究使計算機來模擬人的某些思維過程的智能行為學科,主要包括如下領域:專家系統、機器學習能力、模式識別、人工神經網絡。在智能領域里最關鍵的問題之一,就是機器學習的問題。一旦機器有了學習能力,人類的未來發展難以預料!

(3)人工智能的積極影響及美好前景。人工智能的發展還沒有到達一定水平,人工智能機器就可以和人做朋友,可以作為家里的一份子出現,進入人們的生活。我們在未來要研究人工智能的發展,也要研究人工智能出現以后所帶來的問題,把人工智能的優勢發揮的更好,給人類帶來更美好的未來。

結束語:

篇4

【關鍵詞】計算機;人工智能技術;應用

1引言

人工智能技術已經成為目前最受社會關注的新興科技之一,隨著該技術在各行業和領域中的應用不斷深入,人們的工作和生活方式不斷向智能化方向發展,工作和學習效率都得到了質的飛躍,未來,人工智能技術也必然會獲得更加廣闊的發展前景。

2人工智能技術概述

人工智能是計算機科學的一個分支,這門學科的主要目標是了解人類智能的本質,并通過將人類智能轉移到智能機器中,使智能機器能在不同應用場景下做出類人思維的反應。人工智能是一項綜合了多項高新科技的綜合性學科,包含5項核心技術,分別是計算機視覺、機器學習、自然語言處理、機器人技術和生物識別技術。其中,機器學習是實現計算機人工智能技術的核心技術,該技術使智能機器在算法復雜度理論、凸分析、統計學等學科的支持下,能自主模擬人類行為。目前已經發表的機器學習策略主要包括模擬人腦的機器學習和采用數學學習方法2種策略。其中模擬人腦的機器學習策略又可細分為符號學習和神經網絡學習,符號學習是以認知心理原理為基礎,在機器中輸入符號數據,用推理過程在圖或狀態空間中搜索并進行符號的運算,對概念性和規則性知識的學習能力較為突出,如示例學習、記憶學習、演繹學習等;神經網絡學習是從微觀生理角度對人腦活動進行模擬,利用函數結構模型代替人腦神經網絡,以函數結構進行數據運算,并在數據迭代過程中在系數向量空間中搜索,對函數型問題具有較好的學習能力,如拓撲結構學習、修正學習等。采用數學方法的機器學習主要是利用統計機器,建立相應的數學模型,擬定超參數,輸入樣本數據后根據不同的運算策略對模型進行訓練,最后根據訓練結果進行結果預測。

3人工智能技術的發展歷程

3.1人工智能技術的興起

雖然新興技術的興起獲得了廣泛的關注,但由于人工智能技術涵蓋的學科和技術范圍過大,興起階段的該技術的理論知識、產品應用、發展應用等均存在明顯缺陷。除此之外,計算機技術在當時也并不成熟,當時的計算機編程和計算水平較為落后,很多超前的想法以當時的技術水平來說實現較為困難。在多種因素的影響下,人工智能技術在興起階段并未得到快速發展。

3.2人工智能技術的高速發展

人工智能技術這一概念在提出后近20年的時期中其發展始終處于停滯狀態,直至20世紀70年代,該領域的專家研發出全新的人工智能專家系統DENDRAL,該系統的誕生帶動人工智能技術邁向新的發展階段,并且在這之后進入高速發展時期。日本始終重視本國科學技術的發展,并且在20世紀80年代提出“科技立國”的政策,此后很長一段時間,日本依托此國策使經濟得到迅速恢復和發展。在1982年,日本國內對第五代計算機的研究以失敗告終,但此次研究中提出了新的計算機算法和邏輯程序語言Prolog,Prolog在處理自然語言過程中具有比LISP語言更好的應用效果,這一創新進一步促進了人工智能技術的發展。人工智能技術的發展建立在多項先進學科共同發展的基礎上,與其他技術相比,人工智能技術在處理數據、整合資源方面具有更大優勢。

3.3人工智能技術的發展現狀

3.3.1專家系統

專家系統指的是一種智能計算機程序系統,是人工智能技術應用最為廣泛也最為重要的領域之一,系統中涵蓋大量某領域專家水平的知識與經驗,通過應用人類在該領域中的專家級別知識來為用戶解決在該領域中遇到的問題。專家系統有效地將人類智能延伸到專業領域中,實現了理論研究向實際應用方向過渡的目標,大幅提高了人類對專業問題的處理效率,并且專家系統依托復雜的算法能對專業問題未來發展的可能性進行更全面的計算,工作效率甚至會比人類專家更高效、更準確。隨著對專家系統研究的不斷深入,目前很多專家系統都能依據對人類行為的模擬在不同的應用場景中作出智能化的反應和判斷,并且能夠利用知識庫,深入挖掘復雜問題的內在聯系。專家系統已經在多個領域中都得到了廣泛的應用,幫助企業更客觀地摸索市場規律,從而作出正確的生產決策、調度規劃、資源配置計劃等,大幅提高了企業經營的科學性,使企業能在節省生產成本的同時,獲得更好的經濟效益。

3.3.2模式識別

模式識別是利用計算機技術將識別對象按一定特征歸類為不同類別,目前人工智能技術在模式識別中的主要研究方向包括語音語言信息處理、計算機視覺、腦網絡組等,希望通過人工智能技術實現對復雜信息的識別和處理,這一應用能促進多個行業向智能化方向發展,如軍事領域、醫療領域等。

3.3.3機器人學

機器人學的主要研究方向是機器人的設計、制造和應用,隨著人工智能技術的成熟與應用,機器人的智能水平不斷提高,并且在不同行業中的應用已經較為普遍,日常生活中常見的機器人包括掃地機器人、迎賓機器人、快遞機器人、早教機器人、無人機等,人們可以利用可移動設備對其進行操作,極大程度地提高了人們生活的智能性和便捷性。

3.3.4機器學習

機器設備并不具備自主思考能力,在不同應用場景下的反應主要是依托計算網絡技術和算法對人類思維模式進行模擬,并將人類行為進行充分消化以使自身性能得到優化,能對不同問題進行處理。機器學習是一項涵蓋多個學科且復雜程度很高的科學,包含統計學、概率學、算法復雜度理論等,是人工智能的核心技術,也是推動計算機向智能化方向發展的關鍵技術。

3.3.5人工神經網絡

人工神經網絡是人工智能技術自進入高速發展時期后廣泛研究的重點內容。利用計算機算法將人腦神經元進行簡單化、抽象化、模式化,并構建成與人腦神經元網絡相似的網絡結構。人工神經網絡技術的成熟與發展為專家系統、模式識別、機器人學、生物、經濟等多個學科的發展提供了技術支持,解決了很多人工智能技術發展中的實際難題。

4人工智能技術的應用

4.1人工智能技術在計算機網絡技術中的應用

4.1.1計算機網絡安全管理

人工智能技術與計算機網絡技術互相依存、互相促進、共同發展,在計算機網絡技術的多個方面都有深入的應用。其中,在網絡安全管理方面主要有如下應用:①智能防火墻技術。防火墻技術隨著計算機的普迅速發展,應用人工智能技術的防火墻技術比傳統防火墻技術的性能更加優異。智能防火墻技術具有智能記憶功能,能自動記錄并儲存歷史處理病毒的記錄,在后續應用過程中依據記錄直接優化計算機匹配環節,減少計算機數據量,提高防火墻的隔離病毒能力。另外,智能防火墻還能結合用戶的需求,對用戶不需要的彈窗功能、訪問權限、有害信息等進行智能化攔截。②計算機入侵檢測。防火墻的主要功能就是為計算機設備創造安全的運行環境,保證系統和內部數據不被侵害。計算機入侵檢測功能是保障防火墻正常工作的基礎功能模塊,對提高計算機數據的安全性和可靠性具有直接的影響。應用人工智能技術的入侵檢測功能,能對計算機系統進行智能化分析和處理,根據預定算法將處理數據整理成為入侵檢測報告,讓用戶能全面地掌握計算機設備的安全狀態。③垃圾郵件智能化處理。該技術依托人工智能技術中的模式識別功能,對接收郵件進行掃描和歸類,發現垃圾郵件后直接將其標注為垃圾郵件,為用戶發出風險警告,避免用戶因誤操對計算機系統造成損害。

4.1.2計算機網絡管理

人工智能技術的發展和應用促進計算機網絡技術向智能化方向發展。在實際應用中,除計算機網絡安全管理模塊外,還能解決多種網絡管理問題。隨著計算機技術的普及,網絡數據呈爆炸式增長,網絡管理工作量和工作難度都達到了空前高度,通過應用人工智能技術,能大幅提高計算機網絡管理效率,優化網絡管理效能。

4.2人工智能技術在企業管理中的應用

企業是市場經濟活動的主要參與主體,是維持市場經濟穩定運行和發展的關鍵要素,在企業生產活動中科學地應用人工智能技術,能有效提高企業的生產能力,促進企業獲得更高的經濟效益和社會效益。具體應用渠道如機械自動化、智能監控、推薦系統、用戶購物行為分析、零售分析、數據提取、文本歸類、文章摘要等,從員工工作的細微之處實現工作效率上的提升,進而提升企業整體的運行效率。對工業行業來說,應用機械自動化技術還能有效降低傳統工業生產中對人工的依賴性,大幅提高工業企業的生產能力,在行業發展的過程中起到了非常積極的促進作用。

4.3人工智能技術在航空航天技術中的應用

航空航天技術是目前人類最高科技的集合體,涵蓋眾多學科,如信息技術、衛星技術、生物技術、天文學、生命科學等,對提高國家的國防力量、提高國家的國際地位、促進國家經濟增長都具有非常重要的意義。航天器設計是航空航天領域中的關鍵工作之一,而遠程控制又是航空航天技術長久發展以來研究的重點,因我國對該技術的研發起步較晚,我國對航空航天技術的研發存在重重困難,但經過國家和科技工作者的不懈努力,目前我國航空航天技術已處于世界先進水平。將人工智能技術應用于航天遠程控制中,利用智能系統對數據進行自動采集、處理和儲存,如通過采集航天器的軌道信息,并以此分析航天器的運行狀態,根據分析結果制定運行決策,對提高航天器的運行安全性和運行質量都是非常重要的舉措,推動國家航空航天事業獲得進一步發展。

4.4人工智能技術在醫療領域中的應用

目前,人工智能技術在醫療領域中的應用已經非常廣泛,使醫護人員的工作內容不斷得到優化,提高工作效率,還有效提高了國家醫療水平。具體應用包括以下幾項內容:①在電子病歷中的應用。傳統就醫診斷環節,醫生都需要以手寫方式記錄病患病例,并根據病例詳細列出治療方案,工作量大,且效率較低,病例保存便捷性較差。通過應用電子病例,不僅能大幅減少病例記錄的工作量,還能在醫療系統中直接勾選治療所需藥品,完成病例及用藥的勾選后打印即可,既能大幅提高工作效率,還能將病例在計算機中進行儲存,且現階段病例文件的儲存格式不再局限于文字,語音和圖像也可被添加到病例中,提高醫療診斷的準確性。②在健康管理中的應用。在現代醫療中應用人工智能技術,對病患的病情進行智能化分析,能使醫生對疑難病癥的分析更加全面準確,制定針對性更強的醫療方案,提高醫療水平,為改善患者的健康狀況提供輔助。

5結語

綜上所述,計算機人工智能技術的應用,對社會各行業都產生了不同程度的影響,人們的工作和生活方式得到優化和改變,國家科技水平也不斷提升。加強對計算機人工智能技術的研究,推動人工智能技術在各個行業中的應用,讓人們能切身感受到科技為生活帶來的改變,對促進人類社會的發展具有非常重要的意義。

【參考文獻】

【1】辛穎楚.計算機人工智能技術研究進展和應用分析[J].信息與電腦(理論版),2019(9):121-122+125.

【2】陳長印.計算機人工智能技術研究進展和應用分析[J].計算機產品與流通,2019(12):5.

【3】楊坤,顧兢兢.計算機人工智能技術研究進展和應用分析[J].電腦知識與技術,2019,15(33):197-198.

【4】鄭驁.淺談計算機人工智能技術研究進展和應用[J].科學與財富,2019(19):276.

【5】趙智慧.計算機人工智能技術研究的進展及應用[J].信息與電腦(理論版),2019,31(24):94-96.

【6】李子青.計算機人工智能技術的應用與未來發展分析[J].科技經濟市場,2019(10):9-11.

【7】羅柱林,韓文超,呂文杰,等.計算機人工智能技術的應用及未來發展探究[J].中國航班,2019(16):90.

【8】李喬鳳.計算機人工智能技術的應用與未來發展分析[J].數字技術與應用,2020,38(3):91+93.

【9】肖梅.計算機人工智能技術的應用及未來發展初探[J].締客世界,2019(1):39.

篇5

工作中存在的不足網絡輿情監測工作是指網絡信息工作的部門或人員在特定時期或者在特定的事件中對公眾在互聯網上發表的言論和意見進行監視、收集、分析、整理及預測的行為,這些言論被稱為網絡輿情。

當前的網絡輿情監測工作平臺主要是基于信息采集、整合技術和智能處理技術,通過對互聯網海量信息的自動抓取、自動分類聚類、主題檢測、專題聚焦,實現對用戶的網絡輿情監測,并由相關部門形成輿情工作報告、輿情信息簡報等,為輿論引導提供可靠的分析依據。

進入大數據時代,網絡輿論呈現的新特點,促使網絡輿情監測工作暴露出諸多不足之處,這為網絡輿情監測工作帶來了諸多挑戰。

網絡輿論信息格局發生變化,輿情分析質量亟待提高。據人民網權威的《2016年中國互聯網輿情分析報告》顯示,在2016年,伴隨著移動互聯網應用不斷向社會各層面滲透,網絡輿論的格局發生了很大變化,如網民結構與社會人口結構趨同,網民產生代際更新導致網絡流行議題和文化熱點發生轉換,微博、微信平臺化,專業自媒體步入興盛等。在這樣的變局下,網絡輿情監測工作面臨著新的挑戰。然而,有些部門的輿情信息收集工作仍然停留在報刊、門戶網站、BBS、微博等開源信息的收集階段,并未將新聞客戶端、微信、直播等平臺打通,難以保證輿情信息分析的全面性以及輿情熱度指標的準確性?!?016年中國互聯網輿情分析報告》還對近五年來參與當年最具網絡關注度的20個輿情熱點事件討論的320萬微博用戶樣本進行了分析,發現關注新聞事件和聚焦熱點話題的網民發生了代際交替,在性別方面,女性的比例明顯上升;在地域上,三、四線城市用戶增長迅猛。受眾層面發生的這些變化,也將在輿情監測工作中體現出來。然而在目前的輿情監測工作中,相關信息部門的輿情信息報送在內容上只是就事論事、停留在現象層面,對受眾的成分、熱點事件的社會背景以及事件背后所反映出來的社會問題沒有進行細致深入的研究分析;在形式上,網絡輿情監測工作的報送還停留在工作動態報告或者事件日志等形式的報送上。這樣就造成了網絡輿情信息的價值作用降低、服務能力減弱的問題。

熱點事件話語體系不可控,輿情預警能力亟待增強??v觀近年來發生的熱點公共突發事件,可以發現,在以大數據為基礎的社交平臺上,公眾的話語體系呈現出了一些全新特征,如輿論主體的匿名性、參與渠道的多元化、生成議題的自發性、交流觀點的無界性、匯集意見的實時性、發展趨勢的不確定性等。這些特征與輿論話語體系在傳統媒體的呈現完全不同,網絡輿論熱點事件話語體系的不可控性大大增強。

在社交媒體平臺上,自媒體呈現出來的話語體系最為龐雜。許多輿情信息不僅包含結構化數據,還涉及大量非結構化數據,若對其準確性、真實性逐一核查,既耗費人力又耗費時間。就內容而言,較多負面、虛假輿情具有較強的隱蔽性,單純以關鍵詞或主題詞進行搜索容易產生誤判、遺漏。話語體系的不可控性增加了輿情監測工作的難度,這要求工作人員必須具備過硬的專業敏感性以及較強的網絡操作技能。但是目前大多數輿情監測工作部門的信息工作人員缺乏專業化的訓練,輿情信息工作水平參差不齊。就輿情監測平臺系統來說,對于輿情信息的跟蹤分析靈敏度較低,在有些熱點事件的處理上沒有按照公共突發事件的分類標準進行準確的分級,從而導致網絡輿情信息的分析判斷力體現不出其應有的情報價值,預警能力也隨之削弱。

輿情監測的技術體系落后,人機不協調問題亟待解決。網絡輿論的實時性及其發展的不確定性要求網絡輿情監測必須迅速、及時,但很多單位部門的輿情監測平臺的方法技術體系滯后,部分單位采用了網絡監控系統、有害信息過濾系統等方式進行網絡輿情監測,而有些單位為了節省輿情監測設備的成本,甚至將網絡輿情監測工作依托于人工網頁搜索及瀏覽的“人工盯梢”方式上,這成為監測工作的一大阻礙,監測工作出現疏忽錯判也在所難免。排除資金、人力等客觀因素,現階段的網絡輿情監測工作中技術方法體系的不足主要歸因于“人機不協調”。機器與人工的協同分工模式不成熟、機器的輔助力量不夠,導致人工智能技術在預測監測體系中分析情感、預測走勢、檢查效果等方面應用還稍顯粗淺、機械,而在需要人工進行的高級維度分析、提出應對策略等層面,機器的應用又顯得粗糙以及同質化。

人工智能為網絡輿情監測帶來的三大變革

網絡輿情監測要適應大數據時代人工智能的要求,就必須順勢而為,積極進行變革,主要包括網絡輿情監測技術體系的變革、網絡輿情監測研究范式的變革以及網絡輿情監測管理思維的變革三個方面。

網絡輿情監測技術體系的變革。將人工智能技術應用于網絡輿情是為了更好地對輿情進行分析研判,通過直觀、簡明的方式描述網絡輿情信息的產生,進一步推導信息傳播主體的態度傾向性、情緒感染性以及初衷、意圖等,從而預測網絡輿情信息的發展趨勢。

如果說在“小數據”環境下,網絡輿情監測工作還可以依托于“人工盯梢”的方式來完成,那么在“大數據”環境下,當數據的量級達到了EB甚至ZB級別后,以人工監測來把握輿情脈絡已成為不可能完成的任務。而那些隱含在網絡輿情信息中的觀點、態度及情緒的表達,更難以從泛濫成災的信息碎片中被真正發掘出來。加之海量信息的不共享所帶來的“信息盲區”,更使得輿情信息分析不夠嚴謹,易偏離實際,而這些問題都需要依托搭建智能化的網絡輿情監管平臺來解決。在平臺上可以通過三種人工智能技術實現數據分析與人工智能研判相結合,再借助如眼動儀、腦電儀等受眾檢驗儀器對網絡輿情信息進行綜合化分析。三種主要的人工智能技術主要包括:一是Web挖掘技術,該技術把互聯網與數據挖掘技術結合起來,對網絡上結構化數據如文字言論,以及非結構化的數據如視音頻、圖像等信息進行采集,完成信息前期處理的第一步;二是語義識別技術,該技術是利用采集到的信息,通過對語句中的關鍵詞進行詞義推斷處理以及句子語法結構的分析,從而將復雜信息簡單化,這是對采集的信息數據做進一步識別推斷的過程;三是TFDF信息聚類技術,該技術主要提升數據信息的分析和分類速度,使網絡輿情監測工作的處理更加及時,反應更加靈敏,提高采取措施的時效性。

人工智能技術的介入將有利于對信息進行挖掘、采集、分類、整理,從而找尋出最核心的關鍵性數據。在此基礎上,還可以運用人工神經網絡預測模型,對網絡輿情的性質、發展趨勢進行正確描述,并提出相應的對策。

網絡輿情監測研究范式的變革。人工智能和大數據對網絡輿情監測工作及其研究產生了頗為深刻的影響,輿情監測的研究范式從多角度發生了轉向。

第一,輿情監測工作視角的轉向:從單一化到多元化。在社交媒體平臺上,受眾的角色首先發生了轉向,由信息的被動接收者轉變為信息的參與者和傳播者。這一轉向給網絡輿情監測工作帶來了新的挑戰,當受眾是單純的信息接收方時,網絡信息的可控性強,輿情監測工作形式單一,把關相對容易。而受眾角色發生變化以后,網絡信息傳播的不可控性大大增加,信息傳播速度加快,信息傳播呈現多元化特征,把關難度增加,網絡輿情監測工作也從單一轉向多元化,還需要對信息進行疏導、研判處理。

第二,研究視角的轉向:從內容研究轉向“內容+關系”研究。傳統的網絡輿情信息研究最重視的是受眾借助網絡進行的話語表達,其研究視角主要集中在內容層面。隨著人工智能技術的介入,這一單向視角將發生轉變,潛藏在內容層面背后的網絡受眾心理、行為、動機、訴求等多方面因素都將被關注到。借助人工智能技術及大數據分析技術,網絡輿情信息的研究視角將透過內容層面深入到關系層面,轉向對網絡受眾社會心理描繪、社會關系呈現、社會話語表達等多維度的研究。

第三,研究重點的轉向:由輿情監測轉向輿情預測。當前的網絡輿情監測工作主要通過對當下網絡輿情的動態信息進行隨機采樣來收集、整理、分析,更多的是關注已經發生的事件在過去及當下的動向,對未來的發展預測難以兼顧。而借助人工神經網絡預測模型,通過自然語言處理、模式識別及機器學習等人工智能技術,可以對網絡輿情的性質、發展趨勢進行正確描述,再結合大數據分析處理整群數據來實現預測功能。比如,著名的搜索引擎公司谷歌通過關注用戶搜索中的“流感”關鍵詞來預測實際流感發生的時間,往往可以提前兩三個周對流感的爆發進行預報及預防。

網絡輿情監測管理思維的變革。在以人工智能技術為支撐的網絡輿情監測平臺出現之前,相關輿情監測部門的管理者往往由一人或幾人的小團隊組成,在監測信息數據量級不大的情況下,這種小作坊式單打獨斗、面面俱到的輿情監控管理思維可以基本滿足需求。但是隨著人工智能技術的發展及大數據時代的到來,這種小作坊式的輿情監測體系面臨瓦解。當前,商業化運營的軟件監測團隊多達幾百家,這些監測軟件服務商通過開發相應的輿情監測軟件為政府部門、企業主體以及科研院所提供服務,進行簡單的輿情信息數據采集及分類處理工作。在數據開源的情況下,這些軟件服務商的競爭逐漸由粗放型、低層次化向數據處理的優化、人機互動、機器算法的精進等層面轉變。

在以上變化的基礎上,輿情監測的管理思維也必須轉向,組建一支人員分工明確、高度聚合集約的輿情分析團隊勢在必行。輿情管理的思維變革依托于人工智能監控系統改變團隊的組織結構及管理方式,通過智能化的輿情監測系統代替低效的人工操作,其專業性要求頗高,而最佳處理模式就是專業化團隊加人工智能技術。按照這樣的管理思維,未來輿情監測團隊的分工將更加明確,行業內部集約聚合程度將進一步提高,行業有機化程度也將逐步增強。

篇6

關鍵詞:大數據時代;人工智能;計算機網絡技術;應用價值

21世紀以來,世界都已經進入大數據發展時代,人工智能的應用與居民生活息息相關。人工智能就是模仿人類的行為方式和思維模式進行工作處理,它比計算機技術更加具有實用價值。所以,為了迅速提高我國大數據時代人工智能在計算機網絡技術中的應用,論文基于此展開詳細分析探討,深入研究人工智能在計算機網絡技術中的應用價值。以下主要針對于人工智能計算機的基本內容展開簡單分析與探討:

一、人工智能計算機的概況

利用計算機技術來模仿人類的行為方式和思維模式就叫做人工智能。人工智能,技術的涵蓋內容廣泛,且創新性高、挑戰力度大,它的發展與各學科知識包括信息與計算科學、語言學、數學、心理學等都有關聯。人工智能的發展目標是通過計算機技術讓本該由人工操作的危險或復雜的工作由人工智能機器代替,從而額實現節約勞動力、減少事故危害發生的情況,進而提高工作效率和工作質量。人工智能的發展形式多樣。第一,人工智能可以幫助完善某些較為復雜的問題或是當前還無法解決的問題,若是發生由計算機運算都還無法獲得正確模型的情況,此時就可利用人工智能來對該項問題進行有效解決,針對模糊的問題和內容,利用人工智能模式來不斷提高網絡使用質量。第二,人工智能可以將簡單的東西或知識復雜化,得到人們想要的高級程序和數據,從而節約實現,提高工作效率。

二、大數據時代人工智能在計算機網絡技術中的應用

(一)數據挖掘技術在計算機網絡技術中的應用數據挖掘技術在近幾年來越來越受到人們的重視,因為數據挖掘技術是大數據時展的關鍵技術。利用人工智能技術可研究外界不安全因素的入侵頻率,并在網絡安全運行的前提下結合網絡存貯狀態,將研究結果記錄保存。之后的工作中,若計算機處于運行情況時發生安全問題,系統會立即給予警告提示,并及時攔截入侵對象。數據挖掘技術其實從根本上來看,就是由人工智能技術和大數據技術的綜合發展而來,模仿人類處理數據信息的特征和方式,讓計算機實現對數據的批量處理。此外,數據挖掘技術還可與各種傳感器融合工作,從而實現技術功效的最大潛力,不斷增強計算機系統的功效和實用價值。

(二)入侵檢測技術在計算機網絡技術中的應用現展迅速,網絡科技已成為人們日常生活中至關重要的組成成分,給人們的生活工作帶來極大便利,但是其中也潛存很多不穩定因素。所以,網絡安全技術的發展是保證網絡使用正常工作的重要前提。當前,已經有很多網絡機制被運用到保護網絡安全的工作中,但是在對網絡安全管理時發現仍舊有很多不穩定因素的存在,尤其是現在網絡技術的發展迅速,很多手機支付等網絡支付方式中會存在支付密碼泄露的情況。基于此,在網絡計算機安全使用過程中起到良好作用的是入侵檢測技術。該技術被使用時,可以對網絡中潛存的安全隱患信息及時偵查處理,對其數據信息進行檢測,最后將檢測結果的分析報告反饋給用戶,實現有效檢測。入侵檢測技術的不斷發展和完善,讓計算機網絡的安全運行得到極大保障,在對計算機網絡進行安全檢測的條件下,防止網絡受到外界環境的干擾。人工智能技術中還可結合人工神經系統高和專家系統網絡,實現對實時變化信息的即時監控,切實保障計算機網絡技術的安全發展。

(三)防火墻技術在計算機網絡技術中的應用計算機的硬件與軟件相結合才能讓防火墻技術發揮功效,為計算機的安全運行構建一個完整的保護盔甲。防火墻技術的應用是針對整個計算機網絡的使用安全,極大的降低了由于外界非法入侵帶來的不穩定因素,讓計算機的安全得到保障。尤其是在現在大數據時代的發展背景下,防火墻技術的優點更加明顯,防止計算機被非法入侵是防火墻技術的最重要功效。當前,人們每天都會收到很多封垃圾郵件和短信,部分郵件和短信還攜帶有危害性質的病毒,一旦點開這些垃圾信息和短信就會造成病毒入侵,讓計算機中原本的私人信息遭到泄露。因此,需要人工智能技術來幫助人們進行信息識別,掃描郵件中是否有不安全因素的存在,找出后還可立即進行排除,防止安全事故的發生。根據以上內容的分析得出,在當前的計算機網絡系統應用過程中,人工智能技術已成為主導技術之一,它能夠結合其他任何智能技術實現創新發展和進步,以促進計算機網絡系統的安全使用,讓計算機網絡系統高效、安全的發展,這也讓人們的生活、工作水平進一步提高。

篇7

關鍵詞:人工智能;教育;新模式;改革;構想

教育是著眼于未來的事業,教育的首要任務就是為未來社會培養相適應的合格人才。隨著人工智能的誕生和發展,我國已經開始將人工智能應用于教育領域,并顯示出人工智能對于彌補當前教育存在的種種缺陷和不足,推動教學現代化和教育發展改革進程起著越來越重要的作用。在現代醫學發展中,工程科學與臨床醫學不斷融合,相互進步。近幾年,隨著人工智能技術,機器人技術,虛擬與增強現實技術,3D打印技術與醫學不斷的融合發展,衍生出一系列的醫學診療技術,儀器,大大推進了醫學發展。從2013年到2017年,國務院、發改委、FAD連續發文,多次提及醫療走智能化、云化的趨勢,為推動智能醫療領域保駕護航。智能與醫學的結合已經是大勢所趨,因此,為培養大量智能醫學人才極有必要對智能醫學教育新模式進行深入研究。

一、目前醫學教育以及醫學人才培養狀況

智能醫學工程是一門將人工智能、傳感技術等高科技手段綜合運用于醫學領域的新興交叉學科,研究內容包括智能藥物研發、醫療機器人、智能診療、智能影像識別、智能健康數據管理等。

智能醫學工程的畢業生掌握了基礎醫學、臨床醫學的基礎理論,對智慧醫院、區域醫療中心、家庭自助健康監護三級網絡中的醫學現象、醫學問題和醫療模式有較深入的理解,能熟練地將電子技術、計算機技術、網絡技術、人工智能技術,應用于醫療信息大數據的智能采集、智能分析、智能診療、臨床實踐等各個環節。實驗教學正是融合型創新人才的最好培養方式。智能醫學人才的培養需要各學科間的相互交融更為緊密,學生的創新應用能力才能得到更好的培養。與此同時,由于絕大部分醫工結合的專業大部分歸屬與工科學院下,缺乏必要的臨床經驗,因而學生不能很好的把握新技術的應用。

而國內相關人才缺口還非常大,目前,國內僅僅有生物醫學工程、醫學信息工程等工科專業培養醫工結合人才。但是囿于培養時間與培養模式,他們往往只能針對具體某一方向,并且目前的培養體系還多著重于工學技術的研究,缺乏臨床實踐。

二、智能+醫學教育的必要性探究

2.1技術進步對醫療人員的診療幫助

以癌癥的治療為例,由于針對癌癥藥物的研究何藥物數量非常巨大,對于普通醫生在短時間內難以進行準確的判斷針對癌癥的研究和藥物數量非常巨大,具體來說,目前已有800多種藥物和疫苗用于治療癌癥。但是,這對于醫生來說卻有負面的影響,因為有太多種選擇可供選擇,使得為病人選擇合適的抗癌藥物變的更加困難。同樣,精確醫學的進步也是非常困難的,因為基因規模的知識和推理成為決定癌癥和其他復雜疾病的最終瓶頸。今天,許多受過專業訓練的醫學研究員需要數小時的時間來檢查一個病人的基因組數據并作出治療決定。

上述問題在擁有工學、醫學雙背景的醫生手中已經不是問題,通過目前日漸成熟的AI技術,對于大量的醫療數據進行檢索,通過可靠的編程手段,通過人工智能技術,建立完備的醫療數據庫,幫助醫生進行診療。據調查,美國微軟公司已經研制出幫助醫生治療癌癥的人工智能機器,其原理是對于所有關于癌癥的論文進行檢索,并提出對于病人治療最有效的參考方案,它可以通過機器學習來幫助醫生找到最有效,最個性化的癌癥治療方案,同時提供可視化的研究數據。

2.2智能醫學對于新時代醫生培養的影響

人工智能通過計算機可為學生提供圖文并茂的豐富信息和數據,一方面加強了學生的感性認識,加強了對所學知識的理解和掌握,從而提高了教學質量。同時,人工智能可幫助教師完成繁雜的、需適應各種教學的教學課程、課件等設計,使教師將更多的精力專注于學與教的行為和過程,從而提高教學效率。正如前面所述例子,智能網絡模塊化學習平臺可使教學擺脫以往對于示教病例的依賴,拓展了學生們的學習空間和時間,可極大地提高醫學學習效率和教學質量。

教育與人工智能相結合將會創新教育方式和理念。北京師范大學何克抗教授在《當代教育技術的研究內容與發展趨勢》中提到當代教育技術的五大發展趨勢之一就是“愈來愈重視人工智能在教育中應用的研究”。結合上述人工結合上述人工智能在醫學教育中的創新作用,下面就人工智能結合醫學學教育新模式提出一些構想。

三、交叉醫學人才的培養

3.1建立智能醫學人才培養體系的必要性

目前智能醫學的研發和臨床還存在隔閡,臨床醫生并沒有很好地理解人工智能,無法從實踐出發提出人工智能能夠解決的方向,而人工智能的產業界熱情高漲,卻未必能踩準點,所以產業界需要和臨床深度溝通融合,才能真正解決看病難、看病貴的問題,緩解醫療資源緊張。目前,國內僅僅有生物醫學工程、醫學信息工程等工科專業培養醫工結合人才。

3.2醫學人才培養體系初步構想

據悉,目前已經有天津大學、南開大學等幾所院校開設了智能方向的醫學本科教育,旨在彌補上述缺口,相關院校也在積極探索新型人才培養方案。應當為醫學生開設人工智能課程,應當培養具備生命科學、電子技術、計算機技術及信息科學有關的基礎理論知識以及醫學與工程技術相結合的科學研究能力。該專業的學生主要學習生命科學、臨床醫學,電子技術、計算機技術和信息科學的基本理論和基本知識,充分進行計算機技術在醫學中的應用的訓練,具有智能醫學工程領域中的研究和開發的基本能力。

篇8

關鍵詞:人工智能;本科高年級教學;教學改革

中圖分類號:G642 文獻標識碼:B

1 引言

人工智能是計算機科學與技術學科類各專業重要的基礎課程,在信息類相關的許多高年級本科和研究生都開設了人工智能課程。人工智能是一門前沿性的學科,它主要研究計算機實現智能的基本原理和基本方法,同時人工智能也是一門多學科交叉的綜合學科,它涉及計算機科學、數學、心理學、認知科學等眾多領域。廣義的人工智能涵蓋了模式識別、機器學習、數據挖掘、計算智能、神經網絡、統計學習理論等眾多研究方向。人工智能作為計算機學科的重要分支,已成為人類在信息社會和網絡經濟時代所必須具備的一項核心技術,并將在未來發揮更大的作用。

由于人工智能課程的學習難度較大,內容更新比較快,也繁多,使得教學有一定的難度。特別是針對本科高年級的人工智能教學,由于本科生的研究意識相對較弱,而人工智能比較強調科研性,所以如何教好本科高年級的人工智能課程是一項非常具有挑戰性的任務。

本文通過分析本科高年級的教學特點和人工智能課程的自身特點,在如何提高教學質量這一問題上提出了幾點思考。

2 本科高年級的教學特點

中國的本科教育,由于歷史和經濟發展水平等諸多原因,目前的定位還是培養某方面專業人才的專才教育。本科高年級學生在完成了低年級公共基礎課程和部分專業基礎課程的學習之后,迫切希望了解本專業的應用領域和發展前景,所以在教學過程中要注意內容的應用性和專業性。另一方面,本科高年級學生也是研究生教育的儲備人才,在教學過程中要適時的進行科研引導,這樣能夠讓畢業生保持對科學的興趣,從而為研究生階段進一步深入研究打下基礎。本科生一般于4年級的10月份開始著手畢業設計,在本科高年級的教學過程中還要注意與畢業設計的內容相結合,這樣可以讓學生提前做好準備,選擇適合自己的方向。

3 人工智能課程的學科特點

與信息類其它專業課程相比,人工智能具有應用性、研究性和發展性三個重要學科特點。首先,人工智能是一門應用性很強的學科。人工智能學科的主要目標在于研究用機器來模仿和執行人腦的某些智力功能,并開發相關理論和技術。人工智能技術廣泛應用于模式識別、數據挖掘、智能控制、信息檢索、智能機器人等領域,在日常生活中,隨處可見人工智能技術的應用實例;其次,人工智能技術具有很強的研究價值,是計算機科學領域中重要的研究方向。技術進步無止境,研究者們不斷追求開發出效率更高、更智能的人工智能技術:最后,人工智能是一門正在發展中的學科。隨著信息化、計算機網絡和Internet技術的發展,人類已步入信息社會和網絡經濟的時代,它們為人工智能提出了許多新的研究目標和研究課題,人工智能的應用領域以及技術算法都在不斷發展。

4 人工智能教學的三點思考及對策

4.1 注重應用性和介紹性

在教學實踐中,筆者發現,本科高年級學生一般比較關心各種人工智能技術的應用領域和使用方法,而對基礎性理論和技術細節不是很感興趣。他們一方面希望能學到很多較新和較實用的人工智能算法,并且最好可以看到使用效果;另一方面又希望老師的教學主要停留在介紹性層面,不想花太多時間在復雜的理論理解上。這也比較符合本科高年級的教學特點,本科階段主要是培養具備較強應用性和基礎科研素質的專業人才。傳統的人工智能教學主要講授知識表示和搜索推理技術,大部分實例都是解答式或推證式的。由于其知識的抽象性,又加之其應用實例較少,所以往往教師感覺難講,學生在學習過程中也感覺乏味,對講授的內容大多都是死記其方法和步驟,因此影響了教學效果。針對這一問題,筆者認為,在設計人工智能教學時,要注重內容的新穎性、實用性和介紹性。除了講授那些仍然有用的和有效的基本原理和方法之外,要著重介紹一些新的和正在研究的人工智能方法和技術,特別是近期發展起來的方法和技術,如支持向量機、決策樹、模糊集、遺傳算法、蟻群算法等。這些內容的理論部分可以不必過分深究,教學重點主要放在介紹每種技術的產生背景、發展狀況、應用領域和具體實現上。此外,要注意理論與實際應用密切結合,在教學過程中加入一些與課程內容結合的、可以用計算機實現的實際應用內容??紤]到目前應用最廣泛的人工智能領域之一是模式識別,而研究模式識別的主要計算機工具是Matlab,所以筆者在教學過程中以手寫數字識別作為教學實例,針對所介紹的每一種人工智能技術,都將其應用于手寫數字識別當中,并講解了這些技術的Matlab實現方法。學生在掌握了基本理論之后,可以按照實現步驟的指導,立刻上機見到算法的實際效果,加深對算法實現思路和方法的認識。

4.2 注重科研引導性

本科教學不僅要培養學生的應用能力,還要培養學生具備基本的科研素質。本科教育一方面為社會培養了大批應用型人才,另一方面也要為我國的科研事業培養后備力量。特別是近幾年來我國對科研的投入不斷增加,研究生招生規模逐年增大,本科高年級學生打算繼續讀研的也不在少數。而人工智能是計算機相關學科非?;钴S的研究課題,其涵蓋的分支非常廣泛,如模式識別、機器學習、數據挖掘、計算智能、統計學習理論等,都是目前國際和國內熱門的研究方向。針對這一特點,在本科高年級的人工智能教學中,還要注意對學生適時適度的科研引導。這樣可以激發學生的研究興趣,樹立目標意識,找準研究方向,為未來的科研工作打下基礎。在教學過程中,可以引導學生思考每種人工智能技術的優點是什么?缺點是什么?有沒有改進的辦法?比如BP神經網絡是計算智能中較為成熟的技術,具有強大的非線性學習能力,在模式識別、經濟數據分析、生物信息學、數據挖掘等眾多領域都取得過成功應用。然而BP神經網絡算法自身也存在著一些缺點,如會有局部最小解、解受初值影響較大、理論解釋不完善等。近十年來,研究者逐漸把目光轉移到另一種新的非線性學習工具――支持向量機上。同神經網絡相比,支持向量機具有泛化能力強、不受局部最小問題困擾、理論背景完善等顯著優點。在給學生講解BP神經網絡算法的時候,一方面可以通過手寫數字識別實驗展示其強大的非線性分類能力,另一方面也要告訴學生,BP神經網絡并不是完美的,其缺點同樣明顯。然后引導學生對這些問題進行思考,討論有沒有更好的解決辦法。此時,順勢引出支持向量機的內容,并且介紹支持向量機的研究現狀和研究方向。通過兩者的對比,學生不但了解到了較新的人工智能技術,又對人工智能研究中如何去發現問題、解決問題、人工智能技術的進化歷程有了直觀的印象。

4.3 教學內容與畢業設計相結合

本科畢業設計是對本科生用所學知識來解決實際問題和進行專業研究能力的檢驗,是本科高年級學生將要面臨的一項重要任務。由于人工智能學科具有應用性和科研性的特點,人臉識別、網頁檢索、經濟預測、基因數據處理等應用領域都離不開人工智能技術,所以人工智能方向為學生提供了豐富的畢業設計選題。針對這一特點,在本科高年級的人工智能教學中,可以適當穿插介紹有關畢業設計的內容。告訴學生哪些應用領域是目前人工智能研究的熱點方向,哪些人工智能技術可以用來解決這些問題。通過向學生介紹具有一定應用價值和研究意義的題目,然后引導他們查找閱讀相關技術文獻,分析問題,解決問題,最后編寫代碼和撰寫論文。比如筆者給學生提供的選題包括:(1)基于支持向量機的上市公司信用評價;(2)正則化回歸在股票預測中的應用;(3)基于膚色的人臉檢測;(4)基于內容的網頁圖像檢索等。這些題目應用性強,具有一定科研深度但是難度又不至于太大,學生選擇這些題目的積極性很高。通過將教學內容與畢業設計相結合,不但加深了學生對課程的理解,又使其找到了合適的畢業設計題目,可謂一舉兩得。

推薦期刊
欧美午夜精品一区二区三区,欧美激情精品久久久久久,亚洲av片不卡无码久东京搔,亚洲鲁丝片AV无码APP
一本大道香蕉青青久久 | 亚洲最大日韩精品一区365 | 在线观看国产欧美另类激情 | 久久伊人精品青青草原精品 | 中国少妇zozo变态 | 伊人色综合久久一区二区观看 |